ON THE CHROMATICITY OF THE 2-DEGREE INTEGRAL SUBGRAPH OF q-TREES

  • Li, Xiaodong (The Mathematics and Statistics School, Zhejiang University of Finance and Economics) ;
  • Liu, Xiangwu (Department of Mathematics, Harbin Normal University)
  • Published : 2007.09.30

Abstract

A graph G is called to be a 2-degree integral subgraph of a q-tree if it is obtained by deleting an edge e from an integral subgraph that is contained in exactly q - 1 triangles. An added-vertex q-tree G with n vertices is obtained by taking two vertices u, v (u, v are not adjacent) in a q-trees T with n - 1 vertices such that their intersection of neighborhoods of u, v forms a complete graph $K_{q}$, and adding a new vertex x, new edges xu, xv, $xv_{1},\;xv_{2},\;{\cdots},\;xv_{q-4}$, where $\{v_{1},\;v_{2},\;{\cdots},\;v_{q-4}\}\;{\subseteq}\;K_{q}$. In this paper we prove that a graph G with minimum degree not equal to q - 3 and chromatic polynomial $$P(G;{\lambda})\;=\;{\lambda}({\lambda}-1)\;{\cdots}\;({\lambda}-q+2)({\lambda}-q+1)^{3}({\lambda}-q)^{n-q-2}$$ with $n\;{\geq}\;q+2$ has and only has 2-degree integral subgraph of q-tree with n vertices and added-vertex q-tree with n vertices.

Keywords