Purification, Characterization, and Cloning of Fibrinolytic Metalloprotease from Pleurotus ostreatus Mycelia

  • Shen, Ming-Hua (Department of Biotechnology, BK 21 Research Team for Protein Activity Control, Chosun University) ;
  • Kim, Jae-Sung (Department of Biotechnology, BK 21 Research Team for Protein Activity Control, Chosun University) ;
  • Sapkota, Kumar (Department of Biotechnology, BK 21 Research Team for Protein Activity Control, Chosun University) ;
  • Park, Se-Eun (Department of Biotechnology, BK 21 Research Team for Protein Activity Control, Chosun University) ;
  • Choi, Bong-Suk (Department of Biotechnology, BK 21 Research Team for Protein Activity Control, Chosun University) ;
  • Kim, Seung (Department of Biotechnology, BK 21 Research Team for Protein Activity Control, Chosun University) ;
  • Lee, Hyun-Hwa (Department of Biology, Chosun University) ;
  • Kim, Chun-Sung (Department of Pharmacology, University of Minnesota) ;
  • Chun, Hong-Sung (Department of Biotechnology, BK 21 Research Team for Protein Activity Control, Chosun University) ;
  • Ryoo, Cheon-In (Jan Heung Gun Mushroom Research Institute) ;
  • Kim, Sung-Jun (Department of Biotechnology, BK 21 Research Team for Protein Activity Control, Chosun University)
  • Published : 2007.08.30

Abstract

A fibrinolytic protease (PoFE) was purified from the cultured mycelia of the edible oyster mushroom Pleurotus ostreatus, using a combination of various chromatographies. The purification protocol resulted in an 876-fold purification of the enzyme, with a final yield of 6.5%. The apparent molecular mass of the purified enzyme was estimated to be 32 kDa by SDS-PAGE, fibrin-zymography, and size exclusion using FPLC. The optimal reaction pH value and temperature were pH 6.5 and $35^{\circ}C$, respectively. PoFE effectively hydrolyzed fibrinogen, preferentially digesting the $A{\alpha}$-chain and the $B{\beta}$-chain over the ${\gamma}$-chain. Enzyme activity was enhanced by the addition of $Ca^{2+},\;Zn^{2+},\;and\;Mg^{2+}$ ions. Furthermore, PoFE activity was potently inhibited by EDTA, and it was found to exhibit a higher specificity for the chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 19 amino acid residues of the N-terminal sequence were ALRKGGAAALNIYSVGFTS, which is extremely similar to the metalloprotease purified from the fruiting body of P. ostreatus. In addition, we cloned the PoFE protein, encoding gene, and its nucleotide sequence was determined. The cDNA of cloned PoFE is 867 nucleotides long and consists of an open reading frame encoding 288 amino acid residues. Its cDNA showed a high degree of homology with PoMEP from P. ostreatus fruiting body. The mycelia of P. ostreatus may thus represent a potential source of new therapeutic agents to treat thrombosis.

Keywords

References

  1. Ang, H.-Y., S.-S. Choi, W.-J. Chi, J.-H. Kim, D.-K. Kang, J. Chun, S.-S. Kang, and S.-K. Hong. 2005. Identification of the sprU gene encoding an additional sprT homologous trypsin-type protease in streptomyces griseus. J. Microbiol. Biotechnol. 15: 1125-1129
  2. Ahn, M. Y., B. S. Hahn, K. S. Ryu, J. W. Kim, I. Kim, and Y. S. Kim. 2003. Purification and characterization of a serine protease with fibrinolytic activity from the dung beetles, Catharsius molossus. Thromb. Res. 112: 339-347 https://doi.org/10.1016/j.thromres.2004.01.005
  3. Astrup, T. and S. Mullertz. 1952. The fibrin plate method for estimating of fibrinolytic activity, Arch. Biochem. Biophys. 40: 346-351 https://doi.org/10.1016/0003-9861(52)90121-5
  4. Bodea, W., F. X. Gomis-Rüthb, and W. Stöcklerc. 1993. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS Lett. 331: 134-140 https://doi.org/10.1016/0014-5793(93)80312-I
  5. Chang, C. T., M. H. Fan, F. C. Kuo, and H. Y. Sung. 2000. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 48: 3210-3216 https://doi.org/10.1021/jf000020k
  6. Chang, S. T. 1996. Mushroom research and development equality and mutual benefit, pp. 1-10. In D. J. Royse (ed.), Mushroom Biology and Mushroom Products. The Pennsylvania State University
  7. Chang, S. T. and P. G. Miles. 1989. Edible Mushrooms and Their Cultivation. CRC press, Florida
  8. Choi, H. S. and H. H. Shin. 1998. Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia 90: 674-679 https://doi.org/10.2307/3761226
  9. Choi, H. S. and Y. S. Sa. 2000. Fibrinolytic and antithrombotic protease from Ganoderma lucidum. Mycologia 92: 545- 552 https://doi.org/10.2307/3761514
  10. Choi, H. S. and Y. S. Sa. 2001. Fibrinolytic and antithrombotic protease from Spirodela polyrhiza. Biosci. Biotechnol. Biochem. 65: 781-786 https://doi.org/10.1271/bbb.65.781
  11. Choi, N. S., K. H. Yoo, J. H. Hahm, K. S. Yoon, K. T. Chang, B. H. Hyun, P. J. Maeng, and S. H. Kim. 2005. Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity: Produced by Bacillus sp. DJ-2 from Doen-Jang. J. Microbiol. Biotechnol. 15: 72- 79
  12. Collen, D. 1980. On the regulation and control of fibrinolysis, Edward Kowalski Memorial Lecture. Thromb. Haemost. 43: 77-89
  13. Collen, D. and H. R. Lijnene. 1991. Basic and clinical aspects of fibrinolysis and thrombosis. Blood 78: 3114-3124
  14. Datta, G., A. Dong, J. Witt, and A. T. Tu. 1995. Biochemicalcharacterization of basilase, a fibrinolytic protease from Crotalus basiliscus basiliscus. Arch. Biochem. Biophys. 317: 365-373 https://doi.org/10.1006/abbi.1995.1176
  15. De Groot, P. W. J., P. J. Schaap, L. J. L. D. Van Griensven, and J. Visser. 1997. Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus. Microbiology 143: 1993-2001 https://doi.org/10.1099/00221287-143-6-1993
  16. De-Simone, S. G., C. Correa-Netto, O. A. C. Antunes, R. B. De-Alencastro, and F. P. Silva. 2005. Biochemical and molecular modeling analysis of the ability of two paminobenzamidine- based sorbents to selectively purify serine proteases (fibrinogenases) from snake venoms. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 822: 1-9 https://doi.org/10.1016/j.jchromb.2005.04.018
  17. Dohmae, N., K. Hayashi, K. Miki, Y. Tsumuraya, and Y. Hashimoto. 1995. Purification and characterization of intracellular proteinases in Pleurotus ostreatus fruiting bodies. Biosci. Biotechnol. Biochem. 59: 2074-2080 https://doi.org/10.1271/bbb.59.2074
  18. Hahn, B. S., S. Y. Cho, S. J. Wu, I. M. Chang, K. H. Baek, Y. C. Kim, and Y. S. Kim. 1999. Purification and characterization of a serine protease with fibrinolytic activity from Tenodera sinensis (praying mantis). Biochim. Biophys. Acta 1430: 376-386 https://doi.org/10.1016/S0167-4838(99)00024-2
  19. Hahn, B. S., S. Y. Cho, M. Y. Ahn, and Y. S. Kim. 2001. Purification and characterization of a plasmin-like protease from Tenodera sinensis (Chinese mantis). Insect Biochem. Mol. Biol. 31: 573-581 https://doi.org/10.1016/S0965-1748(00)00162-4
  20. Healy, V., J. O'Connell, T. V. McCarthy, and S. Doonan. 1999. The lysine-specific proteinase from Armillaria mellea is a member of a novel class of metalloendopeptidases located in Basidiomycetes. Biochem. Biophys. Res. Commun. 262: 60-63 https://doi.org/10.1006/bbrc.1999.1151
  21. Hobbs, C. 1995. Medicinal Mushrooms: An Exploration of Tradition Healing and Culture. Botanica Press, Santa Cruz
  22. Jeong, Y. K., J. U. Park, H. Baek, S. H. Park, and I. S. Kong. 2001. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J. Microbiol. Biotechnol. 17: 89-92 https://doi.org/10.1023/A:1016685411809
  23. Jia, Y. H., Y. Jin, Q. M. Lu, and D. S. Li. 2003. Jerdonase, a novel serine protease with kinin-releasing and fibrinogenolytic activity from Trimeresurus jerdonii venom. Acta Biochim. Biophys. Sin. 35: 689-694
  24. Joh, J. H., B. G. Kim, W. S. Kong, Y. B. Yoo, N. K. Kim, H. R. Park, B. G. Cho, and C. S. Lee. 2004. Cloning and developmental expression of a family metalloprotease cDNA from oyster mushroom Pleurotus ostreatus. FEMS Microbiol. Lett. 239: 57-62 https://doi.org/10.1016/j.femsle.2004.08.020
  25. Jung, H. J., H. K. Kim, and J. I. Kim. 1999. Purification and characterization of $Co^{2+}$-activated extracellular metalloprotease from Bacillus sp. JH108. J. Microbiol. Biotechnol. 9: 861- 869
  26. Kim, J. H. and Y. S. Kim. 1999. A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci. Biotechnol. Biochem. 63: 2130-2136 https://doi.org/10.1271/bbb.63.2130
  27. Kim, H. K., G. Y. Kim, D. K. Kim, W. A. Choi, S. H. Park, Y. K. Jeong, and I. S. Kong. 1997. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84: 307-312 https://doi.org/10.1016/S0922-338X(97)89249-5
  28. Kim, J. S., S. Kumar, S. E. Park, B. S. Choi, S. Kim, T. H. Nguyen, C. S. Kim, H. S. Choi, M. K. Kim, H. S. Chun, Y. Park, and S. J. Kim. 2006. A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. J. Microbiol. 44: 622-631
  29. Kim, S. H., N. S. Choi, and W. Y. Lee. 1998. Fibrin zymography: A direct analysis of fibrinolytic proteases on gels. Anal. Biochem. 263: 115-116 https://doi.org/10.1006/abio.1998.2816
  30. Kim, S. B., D. W. Lee, C. I. Cheigh, E. A. Choe, S. J. Lee, Y. H. Hong, H. J. Choi, and Y. R. Pyun. 2006. Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh. J. Ind. Microbiol. Biotechnol. 33: 436- 444 https://doi.org/10.1007/s10295-006-0085-4
  31. Kim, W., K. Choi, Y. Kim, Y. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62: 2482-2488
  32. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  33. Lee, J. S., H. S. Baik, and S. S. Park. 2006. Purification and characterization of two novel fibrinolytic proteases from mushroom, Fomitella fraxinea. J. Microbiol. Biotechnol. 16: 264-271
  34. Lee, S. H., B. G. Kim, K. J. Kim, J. S. Lee, D. W. Yun, J. H. Hahn, G. H. Kim, K. H. Lee, D. S. Suh, S. T. Kwon, C. S. Lee, and Y. B. Yoo. 2002. Comparative analysis of sequences expressed during the liquid-cultured mycelia and fruit body stages of Pleurotus ostreatus. Fungal Genet. Biol. 35: 115-134 https://doi.org/10.1006/fgbi.2001.1310
  35. Lee, S. Y., J. S. Kim, J. E. Kim, K. Sapkota, M. H. Shen, S. Kim, H. S. Chun, J. C. Yoo, H. S. Choi, M. K. Kim, and S. J. Kim. 2005. Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr. Purif. 43: 10-17 https://doi.org/10.1016/j.pep.2005.05.004
  36. Mihara, H., H. Sumi, T. Yoneta, H. Mizumoto, R. Ikeda, and M. Seiki. 1991. A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn. J. Physiol. 41: 461-472 https://doi.org/10.2170/jjphysiol.41.461
  37. Mine, Y., A. H. K. Wong, and B. Jiang. 2005. Fibrinolytic enzymes in Asian traditional fermented foods. Food Re. Intern 38: 243-250 https://doi.org/10.1016/j.foodres.2004.04.008
  38. Nonaka, T., D. Naoshi, H. Yohichi, and T. Koji. 1997. Amino acid sequences of metalloendopeptidases specific for acyl-lysine bonds from Grifola frondosa and Pleurotus ostreatus fruiting bodies. J. Biol. Chem. 272: 30032- 30039 https://doi.org/10.1074/jbc.272.48.30032
  39. Peng, Y., X. Yang, and Y. Zhang. 2005. Microbial fibrinolytic enzymes: An overview of source, production, properties, and thrombolytic activity in vivo. Appl. Microbiol. Biotechnol. 69: 126-132 https://doi.org/10.1007/s00253-005-0159-7
  40. Poindexter, K., N. Nelson, R. F. DuBose, R. A. Black, and D. P. Cerretti. 1999. The identification of seven metalloproteinase-disintegrin (ADAM) genes from genomic libraries. Gene 237: 61-70 https://doi.org/10.1016/S0378-1119(99)00302-9
  41. Shin, H. H. and H. S. Choi. 1999. Purification and characterization of metalloproteases from Pleurotus sajorcaju. J. Microbiol. Biotechnol. 9: 675-678
  42. Stricklin, G. P. and M. S. Hibbs. 1988. Biochemistry and physiology of mammalian collagenases, pp. 187. In M. E. Nimni (ed.), Collagen: Volume I, Biochemistry. CRC Press, Boca Raton, FL
  43. Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43: 1110-1111 https://doi.org/10.1007/BF01956052
  44. Sumi, H., N. Nakajima, and H. Mihara. 1992. Fibrinolysis relating substances in marine creatures. Comp. Biochem. Physiol. B 102: 163-167 https://doi.org/10.1016/0305-0491(92)90290-8
  45. Sumi, H., Y. Yanagisawa, and C. Yatagai. 2004. Natto bacillus as oral fibrinolytic agent: Nattokinase activity and the ingestion effect of Bacillus natto. Food Sci. Technol. 10: 17-20 https://doi.org/10.3136/fstr.10.17
  46. Sunagawa, M. and Y. Magae. 2005. Isolation of genes differentially expressed during the fruit body development of Pleurotus ostreatus by differential display of RAPD. FEMS Microbiol. Lett. 246: 279-284 https://doi.org/10.1016/j.femsle.2005.04.018
  47. Vallee, B. L. and D. S. Auld. 1990. Active-site zinc ligands and activated H2O of zinc enzymes. Proc. Natl. Acad. Sci. USA 87: 220-224
  48. Voet, D. and J. G. Voet. 1990. Biochemistry, pp. 87-1095. Wiley, New York
  49. Wang, C., B. P. Ji, B. Li, R. Nout, P. L. Li, H. Ji, and L. F. Chen. 2006. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J. Ind. Microbiol. Biotechnol. 33: 750-758 https://doi.org/10.1007/s10295-006-0111-6
  50. Wang, F., C. Wang, and M. Li. 2005. Crystal structure of earthworm fibrinolytic enzyme component B: A novel, glycosylated two chained trypsin. J. Mol. Biol. 348: 671-685 https://doi.org/10.1016/j.jmb.2005.02.055
  51. Wasser, S. P. and A. L. Weis. 1999. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: A modern perspective. Crit. Rev. Immunol. 19: 65-96
  52. Whitaker, J. R. 1994. Enzyme inhibitor, pp. 241-270. In J. R. Whitaker (ed.), Principles of Enzymology for the Food Sciences, 2nd Ed. Dekker, New York
  53. Woessner, J. F. 1991. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 5: 2145-2154 https://doi.org/10.1096/fasebj.5.8.1850705
  54. Zaidman, B. Z, M. Yassin, J. Mahajna, and S. P. Wasser. 2005. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl. Microbiol. Biotechnol. 67: 453-468 https://doi.org/10.1007/s00253-004-1787-z