Characterization and Action Patterns of Two ${\beta}$-1,4-Glucanases Purified from Cellulomonas uda CS1-1

  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Choi, Woo-Young (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • Published : 2007.08.30

Abstract

Two ${\beta}$-1,4-glucanases (DI and DIII fractions) were purified to homogeneity from the culture filtrate of a cellulolytic bacteria, Cellulomonas sp. CS 1-1, which was classified as a novel species belonging to Cellulomonas uda based on chemotaxanomic and phylogenetic analyses. The molecular mass was estimated as 50,000 Da and 52,000 Da for DI and DIII, respectively. Moreover, DIII was identified as a glycoprotein with a pI of 3.8, and DI was identified as a non-glycoprotein with a pI of 5.3. When comparing the ratio of the CMC-saccharifying activity and CMC-liquefying activity, DI exhibited a steep slope, characteristic of an endoglucanase, whereas DIII exhibited a low slope, characteristic of an exoglucanase. The substrate specificity of the purified enzymes revealed that DI efficiently hydrolyzed CMC as well as xylan, whereas DIII exhibited a high activity on microcrystalline celluloses, such as Sigmacells. A comparison of the hydrolysis patterns for pNP-glucosides (DP 2-5) using an HPLC analysis demonstrated that the halosidic bond 3 from the nonreducing end was the preferential cleavage site for DI, whereas bond 2, from which the cellobiose unit is split off, was the preferential cleavage site for DIII. The partial N-terminal amino acid sequences for the purified enzymes were $^1Ala-Gly-Ser-Thr-Leu-Gln-Ala-Ala-Ala-Ser-Glu-Ser-Gly-Arg-Tyr^{15}$-for DI and $^1Ala-Asp-Ser-Asp-Phe-Asn-Leu-Tyr-Val-Ala-Glu-Asn-Ala-Met-Lys^{15}$-for DIII. The apparent sequences exhibited high sequence similarities with other bacterial ${\beta}$-1,4-glucanases as well as ${\beta}$-1,4-xylanases.

Keywords

References

  1. Canevascini, G. and C. Gattlen. 1981. A comparative investigation of various cellulase assay procedures. Biotechnol. Biochem. Biophys. 25: 377-379
  2. Choi, W. Y., K. D. Haggett, and N. W. Dunn. 1978. Isolation of a cotton wool degrading strain of Cellulomonas mutants with altered ability to degrade cotton wool. Aust. J. Biol. Sci. 31: 553-564 https://doi.org/10.1071/BI9780553
  3. Choudhury, N., P. P. Gray, and N. W. Dunn. 1980. Reducing sugar accumulation from alkali pretreated sugar cane bagasse using Cellulomonas. J. Appl. Microbiol. Biotechnol. 11: 50- 54 https://doi.org/10.1007/BF00514078
  4. Claeyssens, M., H. Van Tilbeurgh, P. Tomme, T. M. Wood, and S. I. McCrae. 1989. Fungal cellulose systems; Comparisons of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 216: 819-825
  5. Derewenda, U., L. Swenson, R. Green, Y. Wei, R. Morosli, F. Shareck, D. Kluepfel, and Z. S. Derewenda. 1994. Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1.4-$\beta$-Dglycanases. J. Biol. Chem. 269: 20811-20814
  6. Dubois, M., K. A. Gilles, and F. Smith. 1956. Colorimetric method for determination of sugars and related substance. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  7. Dubos, R. J. 1928. The decomposition of cellulose by aerobic bacteria. J. Bacteriol. 15: 223-234
  8. Emtiazi, G. and I. Nahvi. 2004. Production of thermostableamylase and cellulose from Cellulomonas sp. J. Microbiol. Biotechnol. 14: 1196-1199
  9. Ezaki T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39: 224-229
  10. Grabski, A. C., I. T. Forrester, R. Patel, and T. W. Jeffries. 1993. Characterization and N-terminal amino acid sequences of beta-(1-4)endoxylanases from Streptomyces roseiscleroticus. Protein Expr. Purif. 4: 120-129 https://doi.org/10.1006/prep.1993.1018
  11. Haggett, K. D., P. P. Gray, and N. W. Dunn. 1979. Crystalline cellulose degradation by a strain of Cellulomonas and its mutant derivatives. Eur. J. Appl. Microbiol. Biotechnol. 8: 183-190 https://doi.org/10.1007/BF00506182
  12. Hall, J., G. P. Hazlewood, N. S. Huskisson, A. J. Durrant, and H. J. Gilbert. 1989. Conserved serine-rich sequences in xylanase and cellulase from Pseudomonas fluorescens subspecies cellulosa. Mol. Microbiol. 3: 1211-1219 https://doi.org/10.1111/j.1365-2958.1989.tb00271.x
  13. Hall, M. G. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl. Acids Symp. Ser. 41: 95-98
  14. Heo, S. N., J. Y. Kwak, H. W. Oh, D. S. Park, K. S. Bae, D. H. Shin, and H. Y. Park. 2006. Characerization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759
  15. Jones, B. E., W. D. Grant, A. W. Duckworth, P. Schumann, N. Weiss, and E. Stackebrandt. 2005. Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad. Int. J. Syst. Evol. Microbiol. 55: 1711-1714 https://doi.org/10.1099/ijs.0.63646-0
  16. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge
  17. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5: 150-163 https://doi.org/10.1186/1471-2105-5-150
  18. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  19. Langsford, M. L., N. R. Gilkes, W. W. Wakarchuk, D. G. Kilburn, and R. C. Miller. 1984. The cellulase system of Cellulomonas fimi. J. Gen. Microbiol. 130: 1367-1376
  20. Lee, Y. E., S. E. Lowe, and J. G. Zeikus. 1993. Gene cloning, sequence and biochemical characterization of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 3134-3137
  21. Lowe, S. E., M. K. Theodorou, and A. J. Trinci. 1987. Cellulase and xylanase of an anaerobic rumen fungus grown on wheat straw holocellulose, cellulose and xylan. Appl. Environ. Microbiol. 53: 1216-1223
  22. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  23. Medve, J., J. Karlsson, D. Lee, and F. Tjerneld. 1998. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei; Adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59: 621-634 https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C
  24. Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Evol. Microbiol. 39: 159-167
  25. Moore, D. D. 1995. Preparation and analysis of DNA, pp. 2-11. In F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.), Current Protocols in Molecular Biology. Wiley, New York, U.S.A
  26. Nakamura, K. and K. Kitamura. 1983. Purification and some properties of a cellulase active on crystalline cellulose from Cellulomonas uda. J. Ferment. Technol. 61: 379-382
  27. O'Neil, G., S. H. Goh, R. A. J. Warren, D. G. Kilburn, and R. C. Miller Jr. 1986. Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene 44: 325-330 https://doi.org/10.1016/0378-1119(86)90197-6
  28. Pason, P., G. H. Chon, K. Ratanakhanokchai, K. L. Kyu, O. H. Jhee, J. Kang, W. H. Kim, K. M. Choi, G. S. Park, J. S. Lee, H. Park, M. S. Roh, and Y. S. Lee. 2006. Selection of multienzyme complex-producing bacteria under aerobic cultivation. J. Microbiol. Biotechnol. 16: 1269-1275
  29. Rivas, R., M. F. Trujillo, P. F. Mateos, E. Martínez-Molina, and E. Velázquez. 2004. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int. J. Syst. Evol. Microbiol. 54: 533-536 https://doi.org/10.1099/ijs.0.02866-0
  30. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  31. Sanchez, M. M., F. I. Javier Pastor, and P. Diaz. 2003. Exo-mode of action of cellobiohydrolase Cel48C from Paenibacillus sp. BP-23. Eur. J. Biochem. 270: 2913-2919 https://doi.org/10.1046/j.1432-1033.2003.03673.x
  32. Shareck, F., C. Roy, M. Yaguchi, R. Morosoli, and D. Kluepfel. 1991. Sequences of three genes specifying xylanases in Streptomyces lividans. Gene 107: 75-82 https://doi.org/10.1016/0378-1119(91)90299-Q
  33. Shin, Y. K., J. S. Lee, C. O. Chun, H. J. Kim, and Y. H. Park. 1996. Isoprenoid quinone profiles of the Leclercia adecarboxylata KTCT $1036^T$. J. Microbiol. Biotechnol. 6: 68-69
  34. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23
  35. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849 https://doi.org/10.1099/00207713-44-4-846
  36. Tsujibo, H., K. Miyamoto, T. Kuda, K. Minami, T. Sakamoto, T. Hasegawa, and Y. Inamori. 1992. Purification, properties, and thermostable xylanases from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 58: 371-375
  37. Tuohy, M. G., D. J. Walsh, P. G. Murray, M. Claeyssens, M. M. Cuffe, A. G. Savage, and M. P. Coughlan. 2002. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim. Biophys. Acta 1596: 366-380 https://doi.org/10.1016/S0167-4838(01)00308-9
  38. White, A., S. G. Withers, N. R. Gilkes, and D. R. Rose. 1994. Crystal structure of the catalytic domain of the beta-1,4- glycanase cex from Cellulomonas fimi. Biochemistry 33: 12546-12552 https://doi.org/10.1021/bi00208a003
  39. Wood, T. M., S. I. Mcrae, and K. M. Bhat. 1989. The mechanism of fungal cellulase action. Biochem. J. 260: 37-43 https://doi.org/10.1042/bj2600037
  40. Zverlov, V. V., G. A. Velikodvorskaya, and W. H. Schwarz. 2002. A newly described cellulosomal cellobiohydrolase, CelO, from Clostidium thermocellum: Investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology 148: 247-255 https://doi.org/10.1099/00221287-148-1-247