Expression Analysis of the csp-like Genes from Corynebacterium glutamicum Encoding Homologs of the Escherichia coli Major Cold-Shock Protein CspA

  • Kim, Wan-Soo (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Park, Soo-Dong (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Lee, Seok-Myung (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Kim, Youn-Hee (Department of Oriental Medicine, Semyung University) ;
  • Kim, Pil (Division of Biotechnology, The Catholic University of Korea) ;
  • Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University)
  • Published : 2007.08.30

Abstract

Three csp-like genes were identified in the Corynebacterium glutamicum genome and designated cspA, cspB, and cspA2. The genes cspA and cspA2 encode proteins, comprising of 67 amino acid residues, respectively. They share 83% identity with each other. Identity of those proteins with Escherichia coli Csp proteins was near 50%. The cspB gene encodes a protein composed of 127 amino acids, which has 40% and 35% sequence identity with CspA and CspA2, respectively, especially at its N-terminal region. Analysis of the gene expression profiles was done using transcriptional cat fusion, which identified not only active expression of the three genes at the physiological growth temperature of $30^{\circ}C$ but also growth phase-dependent expression with the highest activity at late log phase. The promoters of cspA and cspA2 were more active than that of cspB. The expression of the two genes increased by 30% after a temperature downshift to $15^{\circ}C$, and such stimulation was more evident in the late growth phase. In addition, the cspA gene appeared to show DNA-binding activity in vivo, and the activity increased at lower temperatures. Interestingly, the presence of cspA in multicopy hindered the growth of the host C. glutamicum cells at $20^{\circ}C$, but not at $30^{\circ}C$. Altogether, these data suggest that cspA, cspB, and cspA2 perform functions related to cold shock as well as normal cellular physiology. Moreover, CspA and its ortholog CspA2 may perform additional functions as a transcriptional regulator.

Keywords

References

  1. Av-Gay, Y., Y. Aharonowitz, and G. Cohen. 1992. Streptomyces contain a 7.0 kDa cold shock like protein. Nucleic Acids Res. 20: 5478
  2. Brandi, A., C. L. Pond, and C. O. Gualerzi. 1994. Interaction of the main cold shock protein CS7.4 of Escherichia coli with the promoter region of hns. Biochimie 76: 1090-1098 https://doi.org/10.1016/0300-9084(94)90035-3
  3. Chapot-Chartier, M.-P., C. Schouler, A.-S. Lepeuple, J.-C. Gripon, and M.-C. Chopin. 1997. Characterization of cspB, a cold-shock-inducible gene from Lactococcus lactis, and evidence for a family of genes homologous to the Escherichia coli cspA major cold shock gene. J. Bacteriol. 179: 5589-5593 https://doi.org/10.1128/jb.179.17.5589-5593.1997
  4. de Graaf, A. A., L. Eggeling, and H. Sahm. 2001. Metabolic engineering for L-lysine production by Corynebacterium glutamicum. Adv. Biochem. Eng. Biotechnol. 73: 9-29
  5. Derzelle, S., B. Hallet, K. P. Francis, T. Ferain, J. Delcour, and P. Hols. 2000. Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. J. Bacteriol. 182: 5105-5113 https://doi.org/10.1128/JB.182.18.5105-5113.2000
  6. Francis, K. P., C. E. D. Rees, and G. S. A. B. Stewart. 1995. EMBL/GenBank Accession Number X91789
  7. Follettie, M. T., O. Peoples, C. Agoropoulou, and A. J. Sinskey. 1993. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J. Bacteriol. 175: 4096-4103 https://doi.org/10.1128/jb.175.13.4096-4103.1993
  8. Graumann, P. L. and M. A. Marahiel. 1999. Cold shock proteins CspB and CspC are major stationary-phase induced proteins in Bacillus subtilis. Arch. Microbiol. 171: 135-138 https://doi.org/10.1007/s002030050690
  9. Graumann, P., T. M. Wendrich, M. H. Weber, K. Schroder, and M. A. Marahiel. 1997. A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol. Microbiol. 25: 741-756 https://doi.org/10.1046/j.1365-2958.1997.5121878.x
  10. Gualerzi, C. O., A. M. Giuliodori, and C. L. Pon. 2003. Transcriptional and post-transcriptional contol of cold-shock genes. J. Mol. Biol. 331: 527-539 https://doi.org/10.1016/S0022-2836(03)00732-0
  11. Hermann, T. 2003. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 104: 155-172 https://doi.org/10.1016/S0168-1656(03)00149-4
  12. Ikeda, M. 2006. Towards bacterial strains overproducing Ltryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69: 615-626 https://doi.org/10.1007/s00253-005-0252-y
  13. Jiang, W., Y. Hou, and M. Inouye. 1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272: 196-202 https://doi.org/10.1074/jbc.272.1.196
  14. Jones, P. G., R. Krah, S. R. Tafaci, and A. P. Wolffe. 1992. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J. Bacteriol. 174: 5798-5802 https://doi.org/10.1128/jb.174.18.5798-5802.1992
  15. Kim, H. M., E. Heinzle, and C. Wittmann. 2006. Deregulation of aspartokinase by single nucleotide exchange leads to global flux rearrangement in the central metabolism of Corynebacterium glutamicum. J. Microbiol. Biotechnol. 16: 1174-1179
  16. Kim, H. J., T.-H. Kim, Y. Kim, and H.-S. Lee. 2004. Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J. Bacteriol. 186: 3453-3460 https://doi.org/10.1128/JB.186.11.3453-3460.2004
  17. Kim, T.-H., H.-J. Kim, J.-S. Park, Y. Kim, P. Kim, and H.-S. Lee. 2005. Functional analysis of sigH expression in Corynebacterium glutamicum. Biochem. Biophys. Res. Commun. 331: 1542-1547 https://doi.org/10.1016/j.bbrc.2005.04.073
  18. Kim, J. H., J.-Y. Park, S.-J. Jeong, J. Chun, and J. H. Kim. 2005. Cold shock response of Leuconostoc mesenteroides SY1 isolated from kimchi. J. Microbiol. Biotechnol. 15: 831-837
  19. Kim, T.-H., J.-S. Park, H.-J. Kim, Y. Kim, P. Kim, and H.-S. Lee. 2005. The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. Biochem. Biophys. Res. Commun. 337: 757-764 https://doi.org/10.1016/j.bbrc.2005.09.115
  20. Kim, H.-J., J.-S. Park, Y. Kim, and H.-S. Lee. 2002. Utilization of lacZ to isolate regulatory genes from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 12: 336-339
  21. Koffas, M. and G. Stephanopoulos. 2005. Strain improvement by metabolic engineering: Lysine production as a case study for systems biology. Curr. Opin. Biotechnol. 16: 361-366 https://doi.org/10.1016/j.copbio.2005.04.010
  22. La Teana, A., A. Brandi, M. Falconi, R. Spurio, C. L. Pon. and C. O. Gualerzi. 1991. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc. Natl Acad. Sci. USA 88: 10907-10911
  23. Lee, Y., E. Ahn, S. Park, E. L. Madsen, C. O. Jeon, and W. Park. 2006. Construction of a reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J. Microbiol. Biotechnol. 16: 386-390
  24. Lopez, M. M., K. Yutani, and G. I. Makhatadze. 1999. Interaction of the major cold shock protein of Bacillus subtilis CspB with single-strand DNA templates of different base composition. J. Biol. Chem. 274: 33601-33608 https://doi.org/10.1074/jbc.274.47.33601
  25. Michel, V., J. Lehoux, P. Anglade, G. Depret, and M. Hebraud. GenBank/EMBL Accession Numbers U62985 and U62988
  26. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  27. Park, S.-D., S.-N. Lee, I.-H. Park, J.-S. Choi, W.-K. Jeong, Y. Kim, and H.-S. Lee. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14: 789-795
  28. Phadtare, S. 2004. Recent developments in bacterial coldshock response. Curr. Issues Mol. Biol. 6: 125-136
  29. Phadtare, S. and M. Inouye. 2001. Role of CspC and CspE in regulation of RpoS and UspA, the stress response proteins in Escherichia coli. J. Bacteriol. 183: 1205-1214 https://doi.org/10.1128/JB.183.4.1205-1214.2001
  30. Phadtare, S. and M. Inouye. 1999. Sequence-selective interactions with RNA by CspB, CspC, CspE, members of the CspA family of Escherichia coli. Mol. Microbiol. 33: 1004-1014 https://doi.org/10.1046/j.1365-2958.1999.01541.x
  31. Phadtare, S., M. Inouye, and K. Severinov. 2002. The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J. Biol. Chem. 277: 7239-7245 https://doi.org/10.1074/jbc.M111496200
  32. Sahm, H., L. Eggeling, and A. A. de Graaf. 2000. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. J. Biol. Chem. 381: 899-910 https://doi.org/10.1515/BC.2000.111
  33. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  34. Shaw, W. V. 1975. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol. 43: 737-755 https://doi.org/10.1016/0076-6879(75)43141-X
  35. Tomioka, N., K. Shinozaki, and M. Sugiura. 1981. Molecular cloning and characterization of ribosomal RNA genes from a blue-green alga, Anacystis nidulans. Mol. Gen. Genet. 184: 359-363 https://doi.org/10.1007/BF00352505
  36. Vertès, A. A., M. Inui, and H. Yukawa. 2005. Manipulating corynebacteria, from individual genes to chromosomes. Appl. Environ. Microbiol. 71: 7633-7642 https://doi.org/10.1128/AEM.71.12.7633-7642.2005
  37. von der Osten, C. H., C. K. Gionnetti, and A. J. Sinskey. 1989. Design of defined medium for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. Biotechnol. Lett. 11: 11-16 https://doi.org/10.1007/BF01026778
  38. Wang, N., K. Yamanaka, and M. Inouye. 1999. CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J. Bacteriol. 181: 1603-1609
  39. Weber, M. H., C. L. Beckering, and M. A. Marahiel. 2001. Complementation of cold shock proteins by translation initiation factor IF1 in vivo. J. Bacteriol. 183: 7381-7386 https://doi.org/10.1128/JB.183.24.7381-7386.2001
  40. Wendisch, V. F. 2006. Genetic regulation of Corynebacterium glutamicum metabolism. J. Microbiol. Biotechnol. 16: 999-1009
  41. Willimsky, G., H. Bang, G. Fischer, and M. A. Marahiel. 1992. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J. Bacteriol. 174: 6326-6335 https://doi.org/10.1128/jb.174.20.6326-6335.1992
  42. Wolffe, A. P., S. Tafari, M. Ranjan, and M. Familari. 1992. The Y-box factors: A family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol. 4: 290-298
  43. Xia, B., H. Ke, and M. Inouye. 2001. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol. Microbiol. 40: 179-188 https://doi.org/10.1046/j.1365-2958.2001.02372.x
  44. Yamanaka, K. and M. Inouye. 1997. Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J. Bacteriol. 179: 5126-5130 https://doi.org/10.1128/jb.179.16.5126-5130.1997
  45. Yamanaka, K., L. Fang, and M. Inouye. 1998. The CspA family in Escherichia coli: Multiple gene duplication for stress adaptation. Mol. Microbiol. 27: 247-255 https://doi.org/10.1046/j.1365-2958.1998.00683.x
  46. Yamanaka, K. 1999. Cold shock response in Escherichia coli. J. Mol. Microbiol. Biotechnol. 1: 193-202
  47. Yoshihama, M., K. Higashiro, E. A. Rao, M. Akedo, W. G. Shanabruch, M. T. Follettie, G. C. Walker, and A. J. Sinskey. 1995. Cloning vector system for Corynebacterium glutamicum. J. Bacteriol. 162: 591-597