Linearized Methods for Quantitative Analysis and Parametric Mapping of Brain PET

뇌 PET 영상 정량화 및 파라메터영상 구성을 위한 선형분석기법

  • Kim, Su-Jin (Department of Nuclear Medicine and Interdisciplinary Program in Radiation Applied Life Science, College of Medicine and Institute of Radiation Medicine, Medical Research Center, Seoul National University) ;
  • Lee, Jae-Sung (Department of Nuclear Medicine and Interdisciplinary Program in Radiation Applied Life Science, College of Medicine and Institute of Radiation Medicine, Medical Research Center, Seoul National University)
  • 김수진 (서울대학교 의과대학 핵의학교실 및 방사선응용생명과학협동과정, 의학연구원 방사선의학연구소) ;
  • 이재성 (서울대학교 의과대학 핵의학교실 및 방사선응용생명과학협동과정, 의학연구원 방사선의학연구소)
  • Published : 2007.04.30

Abstract

Quantitative analysis of dynamic brain PET data using a tracer kinetic modeling has played important roles in the investigation of functional and molecular basis of various brain diseases. Parametric imaging of the kinetic parameters (voxel-wise representation of the estimated parameters) has several advantages over the conventional approaches using region of interest (ROI). Therefore, several strategies have been suggested to generate the parametric images with a minimal bias and variability in the parameter estimation. In this paper, we will review the several approaches for parametric imaging with linearized methods which include graphical analysis and mulilinear regression analysis.

Keywords

References

  1. Csele'nyi Z, Olsson H, Halldin C, Gulya's B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands $[^{11}C]FLB$ 457 and $[^{11}C]WAY$100635 Neuroimage 2006;32:1690-708 https://doi.org/10.1016/j.neuroimage.2006.02.053
  2. Siessmeier T, Zhou Y, Buchholz HG, Landvogt C, Vernaleken I, Piel M, et al. Parametric mapping of binding in human brain of D2 receptor ligands of different affinities. J Nucl Med 2005;46:964-72
  3. Yasuno F, Sanabria SM, Burns D, Hargeaves RJ, Ghose S, Ichise M, et al. PET imaging of Neurokinin-1 Receptors with [18F]SPARQ in human subjects: assessment of reference tissue models and their test-retest reproducibility. Synapse 2007;61:242-51 https://doi.org/10.1002/syn.20361
  4. Kim JS, Ichise M, Sangare J, Innis RB. PET imaging of serotonin transporters with [11C]DASB: test-retest reproducibility using a multilinear reference tissue parametric imaging method. J Nucl Med 2006;47:208-14
  5. Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1987;1:365-74 https://doi.org/10.1096/fasebj.1.5.3315805
  6. Gjedde A, Diemer NH. Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Metab 1983;3:303-10 https://doi.org/10.1038/jcbfm.1983.45
  7. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake. J Cereb Blood Flow Metab 1983;3:1-7 https://doi.org/10.1038/jcbfm.1983.1
  8. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-Cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990;10:740-7 https://doi.org/10.1038/jcbfm.1990.127
  9. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996;16:834-40 https://doi.org/10.1097/00004647-199609000-00008
  10. Varga J, Szabo Z. Modified regression model for the Logan plot. J Cereb Blood Flow Metab 2002;240-4 https://doi.org/10.1097/00004647-200202000-00012
  11. Ichise M, Toyama H, Innis RB, Carson RE. Strategy to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 2002;22:1271-81 https://doi.org/10.1097/01.WCB.0000038000.34930.4E
  12. Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin Transporter in Human Brain. J Cereb Blood Flow Metab 2003;23:1096-112 https://doi.org/10.1097/01.WCB.0000085441.37552.CA
  13. Zhou Y, Haung SC, Bergsneider M. Linear ridge regression with spatial constraint for generation of parametric images in dynamic positron emission tomography studies. IEEE Tran Nucl Sci 2001; 48:125-30 https://doi.org/10.1109/23.910842
  14. Zhou Y, Endres CJ, Brasic JR, Huang SC, Wong DF. Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model. Neuroimage 2003;18:975-89 https://doi.org/10.1016/S1053-8119(03)00017-X
  15. Myers RH. Classical and modern regression with application. 2nd ed. Califonia:Duxbury;1990. p. 9-20
  16. Carson RE. PET parameter estimation using linear intergration methods: bias and variability consideration. In: quantification of brain function: tracer kinetics and image analysis in brain PET. Amsterdam: Elsevier Science Publishers;1993. p. 499-507
  17. Slifstein M, Laruelle M. Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J Nucl Med 2000;1:2083-8
  18. Logan J, Fowler JS, Volkow ND, Ding YS, Wang GJ, Alexoff DL. A strategy for removing the bias in the graphical analysis method. J Cereb Blood Flow Metab 2001;307-20
  19. Kim SJ, Lee JS, Lee WW, Kim YK, Jang SJ, Son KR, et al. Multiple linear analysis for generating parametric images of irreversible radiotracer. Nucl Med Mol Imaging [in revision]
  20. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical $]^{11}C]raclopride$ studies. J Cereb Blood Flow Metab 1996;16:42-52 https://doi.org/10.1097/00004647-199601000-00005
  21. Ichise M, James R, Ballinger, Golan H, Vines D, Luong A, et al. Noninvasive quantification of dopamine D2 receptor with Iodine-123-IBF SPECT. J Nucl Med 1996;37:513-20
  22. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET Data. J Cereb Blood Flow Metab 1996;16:834-40 https://doi.org/10.1097/00004647-199609000-00008
  23. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153-8 https://doi.org/10.1006/nimg.1996.0066
  24. Wu Y, Carson RE. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab 2002;22:1440-52 https://doi.org/10.1097/01.WCB.0000033967.83623.34