v HEAY: MESRSH), S

Deep Packet Inspection for Intrusion Detection
Systems: A Survey

Tamer AbuHmed | Abedelaziz Mohaisen | DaeHun Nyang
Inha University

Abstract

Deep packet inspection is widely recognized as a powerful
way which is used for intrusion detection systems for
inspecting, deterring and deflecting malicious attacks over the
network. Fundamentally, almost intrusion detection systems
have the ability to search through packets and identify
contents that match with known attacks. In this paper, we
survey the deep packet inspection implementations
techniques, research challenges and algorithms. Finally, we
provide a comparison between the diflerent applied systems.

Key words: Deep packet inspection, intrusion detection

system, network security, algorithms.

I. Introduction

The enormous attacks from the Internet like viruses, spam,
software vulnerabilities and many of attacks spots make
protection methods an important way to prevent and save
the human efforts from destruction, Therefore, a variety of
methods have been used to protect data, These methods
began with using cryptography, policies, firewalls, IDS and
finally with intrusion prevention systems (IPS) [42]. IDS and
IPS are considered as the second defense line against the

outsider attack which do not know the cryptographic

information. Besides, they work as the first defense line
against insider attacks who can bypass the cryptographic
system,

The DPI is a core component for many systems plugged in
the network including proxies, packet filters, sniffers, IDS,
and IPS, Network components use DPI as an essential
inspector where it is applied in different layers of the OSI
model. Unlike the early beginnings of using DPI where it
was applied in only one layer depending on the header
(e.g., proxies and firewalls etc.), nowadays, layer-
independent attacks force us to inspect attacks in all the
layers, According on the intrusion detection literature, efforts
to obtain a fast implementation can be categorized into two
main categories [31]: (1) design of an efficient data structure
with optimized memory access rate, and (2) design of high
throughput algorithm to process intruder signature,

In this paper, we survey the deep packet inspection
algorithms and their usage in the several existing
technologies which are used for intrusion detection systems,
The rest of this paper is organized as follows: section 2
introduces an overview on the challenges and goals (or
simply objectives) of using the deep packet inspection for
efficient intrusion detection systems, Section 3 and section 4
introduce both the software and hardware implementations
of DPI systems, respectively, Section 5 overviews the ?nite
state machine, section 6 introduces a comparison between

the existing technologies and architectures, and finally

_25

\‘ ZH| _ Deep Packet Inspection for Intrusion Detection Systems: A Survey

section 7 draws concluding remarks,

. Challenges and Goals

The design and implementation of the deep packet
inspection has several challenges which harden its
advancement process. Also, there are several ultimate goals
and design objectives that are always considered when we
make a new DPI design. In this section, we list the different
challenges and design objects.

2.1 Deep Packet Inspection Chalienges

When the DPI becomes mean to detect the intrusion, there
are several challenges related to applying it on the network,
In the following, we summarize these challenges.

1. The search algorithm complexity: the complexity
of the algorithm and the operations of comparison against
the signatures of intruder decrease the throughput of the
system, Thus, search algorithms are the main focus point in
DPI researches, whereas matching process is resource
consuming. For example, the string matching routines in
SNORT [35] account for up to 70% of total execution time
and 80% of instructions executed on real tracesf4],

2. Increasing number of intruder signature:
according to the variety of attacks, the needs for new
intruder signature increase, Therefore, large number of
signatures make the task of IDS harder whereas the
matching process must inspect traffic against all attacks’
fingerprints,

3. The overlapping of signatures: the signatures of
attacks usually are not general so the signatures can be
categorized into groups according to common properties
like protocol type, For example, http packet in snort [35] has
1096 signatures, Therefore, we need to process the packets
before matching process,

26_xz=c g4

4, The Location of signature unknown: due to
various types of attacks on different types of applications,
the pattern of intruders is not localized in specific place in
the packet which means that the IDS must inspect all the
payload of the packet against the attacker signatures,

5. Encrypted Data: the data which is encrypted cannot
be inspected by DPI, However, there are some solutions to
overcome this problem by plugging the DPI component
behind the decryption device. ‘

The DPI system as we mentioned before has many
challenges and in the same time it have to provide the
requirements for network need. There are two main
requirements that should be satisfied on DPI system, and
more detail will be provided in subsection 2,2,which is:(1)
the high speed of processing the packets which affects the
throughput of the system and manages the core speed of
the network (10 Gbps-40 Gbps) and the edges speed (1
Gbps). (2) The low cost for DPI system as memory, and

power consumptions,

2.2 DPI Design Objectives

DPI systems have to satisfy specific objectives to sustain
the traffic rate and intrusion signatures’ growth, Hence, we
conclude some objectives which have to be satisfied by DPI
architecture as following [45] [40]:

1. Deterministic performance: the architecture has to
operate and process traffic stream independently of
signature characteristics or traffic characteristics, So, the
system has to manage traffic in worst case in software and
hardware based systems,

2. Memory efficiency: memory access time is one of
the main bottlenecks in DPI system in software
implementations meanwhile, it is critical in hardware design
as access time and memory scarcity, Thus, high memory
efficient design is preferable.

3. Dynamic update: this objective is very important in
hardware based design to add and remove intruder

signature to system without affecting system operation,

ZH| _ Deep Packet Inspection for Intrusion Detection Systems: A Survey

4. Signatures: DPI system supports fixed intruder
patterns and regular expressions, Also, the system can deal
with all types of intruder patterns [20} which we will illustrate
in the literature in section 4.4.

5. Scalability: scalability is not big issue in software
based system. On the other hand, it is critical in hardware
based systems. Thus, hardware design has to support
unlimited number of signatures,

6. Additional functions:

DPI system can support another function like; multi traffic
s sessions inspected separately, not only inspect the
intruders but also allocate it, and customize signature

subsets or entire signatures to inspect,

DPI

Implementation
4 A
Hardware Software
4 » A » SNORT
Content FPGA Network
Addressable Processors (NP)
Memory
» Bro
A 'y
TCAM CAM

Figure 1. DPI implementations

1. Software Deep packet
Inspection systems

There are many packet scanning applications that require
deep packet inspections. Here, we review three popular
ones: SNORT [35], Bro [10] and Linux L7-filter [28], SNORT
and Bro are two popular intrusion detections systems, while
L7-filter is an application for application layer protocols
analysis which makes packet classification based on
application layer data, These systems are all open source
systems, which allow us to perform a detailed analysis and

show their abilities and constraints,

3.1 SNORT Intrusion Detection System

SNORT is an open source intrusion detection system
which is used for protocol analysis and full packet
inspection against intruder signature, The SNORT system
processes the traffic of packets on multi stages as illustrated
in Figure 2 [47]. SNORT system and all common IDS use
method called analyze-normalized matching (ANM) [32],
SNORT use many string matching algorithms, one of them is
Boyer Moore (BM) algorithm which we will talk about it in
literature about matching algorithms in section 4,1, SNORT
rule may contain header and content fields where the
header part checks the protocol, source and destination IP
address and port, and the content part scans packets
payload for one or more pattemns, Rules with more than one
pattern are called correlated rules, Furthermore, rules can
also contain negation patterns, which mean negation of
patterns stands for no occurrence of the pattern, The
matching pattern may be in ASCII, HEX or mixed format,
HEX parts are included between vertical bar symbols " as

an example of a Snort rule is [35}:

alert tcp any any -) 198.165.200.24/32 111

(content: “id¢j13a31"§"; msg: “mountd access”;)

In this role for SNORT which mentioned above, it specifes
the source and destination IPs and ports of the packet which
will inspect, Besides, it include content phrase for payload

inspection of the packets,

Alert

Content
Normalization

Packet

Decoding » Preprocessing »

v
State Info

Figure 2. SNORT Process Stages

November - 2007_27

Z=H| _ Deep Packet inspection for Intrusion Detection Systems: A Survey

V. Hardware Implementations

As a need to speed up the inspection process, the
hardware (HW) implementations always appear as a
preferable solution for high speed DPI implementation.
However, the different requirements for DPI provide
limitations to perform the deep packet inspection in HW,
The limitation refers to the large number of signature,
complexity and overlapping of signatures and finally the
high rate of signature update and addition, Therefore, the
HW solution has to satisfy the previous requirements by
special properties which are as follows:

1, Use of high degree of pipelining to support inspection

for large number of intruder patterns,

2. The HW component must have high degree of
processing capability to manage complex patterns with
LAN speed (e.g., 10 Gbps),

3. It must be configurable HW to be suitable for changing
situation of intruder patterns,

4, It must be capable of update or add a new pattern
without tuming of the DPI component,

The hardware implementation can be categorized into
three depending on the used technologies in that
implementation as follows:
1, Ternary content addressable memory (TCAM)
implementation [41],

2. Field-programmable gate array (FPGA) implementation
(17].

3. Multicore processors [22],

However, each implementation has its advantages and
limitations which as we will see Jater when we detail each
implementation. In general, multi-core processors
implementations are considered the best preferable among
the implementations due to its programming flexibility, On
the other hand, the TCAM is preferable when the speed is

28_ MEREA

considered,

4.1 Matching Algorithms

The matching for pattem depends on the algorithmic way
to process the data and return the result of existence of the
pattern or not in short time, Accordingly, many algorithms
have been introduced to perform string matching, Though,
the string matching algorithms always suffer from two
factors that affect the throughput of processed data, The first
factor is the computation operations to make comparison
between the pattern and the data and second is the number
of patterns that need to be compared with the traffic of the
incoming data. Historically, the first string matching
algorithm was the brute force (BF) algorithm which
compares the first character in the pattern with the data
stream, If the a single charter match, BF compares stream
with the next character of the pattern and so on, Finally, if
the whole pattern is finished, it issues the pattern matching
results, Later on, many algorithms appear to increase the
performance of matching. These algorithms can be
categorized according to the implementation as software
based, HW based or mixture of both implementations.
Briefly, there are a lot of algorithms for pattern matching,
However, the most famous software based algorithms are
Knuth-Morris-Pratt (KMP) [24], Boyer-Moore (BM) [9], Aho-
Corasick (AC) [1], AC_BM algorithm [14], Wu-Manber (48],
and Commentz Walter (CW) (15, We will summarize the
concept behind selected algorithms and their
implementation, design, and applicability for DPI. On the
other hand, most known HW based algorithms are the
parallel Bloom Filters [17], CAM (content addressable
memory), TCAM, and finally FPGA implementations, KMP
Algorithm: the Knuth-Morris-Pratt (KMP) algorithm [24] came
as an enhancement for the brute force algorithm which was
we introduced before as the early work for pattern
matching, The improvement of KMP over the BF is
performed by skipping characters when the mismatch

oceurs in the comparison phase, This skipping for characters

L ' ZH| _ Deep Packet Inspection for Intrusion Detection Systems: A Survey

depends on preprocessing phase of KMP to the patterns,
The result of the KMP is somehow similar to the finite
automata for patterns representation in which depending on
every match and mismatch a certain jump over the input
stream occurs, Additionally, KMP [24] and BM [9] algorithms
are designed for single pattern searching. If the pattern
length is m bytes, the complexity of the matching algorithm
will be of O(m + n) matching this pattern in an n bytes
stream, If there are k patterns, the search time will be O(k(m
+ 1)) according to that the single search is performed k
times, In [7], Baker and Prasanna implemented a hardware
based DPI architecture for KMP algorithm to exploit the HW
parallelism and reduce the complexity of the above bound,

4.2 Bloom Filter

The Bloom filter is a technique to generate a structure that
compresses the pattern string as s hashed value, After that,
the same hash function that produced the patterns is used to
make the dependences from the input traffic. This method
has been applied firstly in intrusion detection system by
Dharamapurikar et al. [17) and his implementation was on
FPGA., The system implementation achieves a throughput of
2.12Gbps. Bloom filters are very elegant in representing set
membership, but have two potential drawbacks, First, they
require multiple hash functions and memories, and second,
they give an approximate match answer since they allow

false positives,

4.3 Content Addressable Memory

Nowadays, the most popular HW techniques which are
used in commercial packet inspection products are content
addressable memory (CAM) [41). The CAM is a special
memory that makes parallel comparison for its contents
against the input value and returns the address of match
entry, Hence, the CAM is considerably fast and has many
demanded properties such as high access speed near 4
nano-second, the search time complexity is O(1) and

bounded by a single memory access, However, CAM does

not make longest prefix matching which is essential for
many DPI patterns that have the same prefix. Therefore, it is
suitable for deterministic fixed-length matching. Also,
because of the above shortage of CAM, a new HW
component was developed by the name of Ternary CAM
{or simply, TCAM). TCAM memory stores the data with
three logical values (i.e., 0, 1, ? don' t care) and its circuit
diagram is constructed as illustrated in Figure 3(b) [41].
Furthermore, each entry stores the value which is
considered to be intruder signature and entries arranged in
descending index as illustrated in Figure 3(a) [41]. As a result
of the previous properties, for CAM and additionally to
Longest-Prefix Matching, TCAM became as a backbone for
many network devices that depend on packet inspection,
For example, routers and switches primarily use TCAMs to
perform forwarding lookups for Internet Protocol addresses,
TCAMs can be also used in devices that support packet
classification, network address translation, route lookups in
storage networks, layer 4 to layer 7 switching, server load
balancing, label switching, high performance firewall
functions and finally in network intrusion detection system
(NIDS) and network prevention system (NIPS) that depend
on DPI techniques. However, TCAM has some general
disadvantages which are as following [41):

1, High industrial cost per bit relative to other memory
technologies, it s about 30 times SRAM per bit,

2. Storage inefficiency.

3 High power consumption, It is about 180 times than
SRAM per bit and the power consumption proportional
with number of entities which has been searched on
memory lookup.

4, Limited scalability to long input keys,

The special disadvantages for DPI are as follows [29]:

1. Range Representation Problem: TCAM can represent
prefix of patterns in easy way (e.g. “atta XX~ catch any
word start with atta and two letters after) but range

signatures which catch sub-word after arbitrary number

November - 2007_29

3} Z=H| _ Deep Packet Inspection for Intrusion Detection Systems: A Survey

18tentry—1[(0 1 1 0
2|1
3|11 0 7?7 2

nthentry—»n

(a) TCAM

key E)’,
match line
write enable
L L
+ H
/ a2
L HC O+
ma:tch

logic

(b) Circuit diagram of a standard TCAM

Figure 3. (a) TCAM (b} TCAM cell value(0,1,?) encoded by two register al,a2

of character catch the reminder sub-word consumes
more entries in TCAM.,

2. Multi-match Classification Problem: Return back all the
matching results of all matching entries of TCAM, not
just the highest priority entry of TCAM,

Bitwise CAM: In [50], CAM hardware has been
implemented based on a tree-based content addressable
memory structure called “Bitwise CAM”, which involves
HW sharing at bit level in order to exploit powerful logic
optimizations for multiple strings represented as a Boolean
expression. The design can mn at a rate of approximately
2,5 Gbps per second, and is approximately 30% smaller in
area when compared with published results, Also, authors
functionalized the parallelism in the design of an extended
system.,

4.4 TCAM implementations

In literature of TCAM s contribution in DPI, Yu et al, [20]
have been the first to design scheme that deals with all types
of intruder patterns which we will discuss later, In [20], they
implement a scheme for IDS that handles the intruder’ s
signatures with deep analysis to intruder s patterns. The
scheme categorizes intruder patterns into two types:

complex patterns such as long patterns, patterns with

30_xme g4

negation (which means no existence of specific patterns on
traffic) and correlated patterns (which means patterns
separated with specific number of arbitrary characters).
Additionally, there are another type which is a simple
pattern, The work by Yu et al, discusses scheme and
algorithms to deal with each type of pattern and how to
plug it into TCAM. The scheme uses SRAM memory as
partial hit list (PHL), which considered slow in access
compating to TCAM, to store detection of partial correlated
patterns encounter in traffic, Nonetheless, the scheme has
bottleneck when the intruder intentionally send packets that
make PHL access rate very high and then effect the system
throughput. That is due to the need of multi memory look
up. According to the simulation, this scheme can be
operated on 2 Gbps traffic, The implementation of Yu et al,
in [20] suggests lookup on TCAM entries for each new
character. Thus, the input of n character requires the
complexity of O(n) lookup over TCAM. On the other hand,
Jung et al, in (38] presented a scheme in which jumps are
made over the input traffic by window slide size m which is
called jumping window scheme and match the intruder
signature over single packet, It reduced the number of
TCAM lookup over n input character to O(n/m) and
provided throughput of 10 Gbps using 2,394 SNORT rules,
Also, Sung et al. in [39] extended the jumping window

Z| _Desp Packet Inspection for Intrusion Detection Systems: A Survey J

scheme to work over multi packets intruder signatures,

4.5 Multi-core Processors implementations

Multi-core processors implementations are preferable for
designing IDS due to flexibility, However, multi-core
processors still have limitation in number of processors and
size of on-chip memory which affect efficiency of IDS
implementations on it. In the following, we will introduce a
survey on a part of the efforts been performed to implement
IDS on network processors.(NP) which is a type of multi-
core processor implementation, In [16], Bruijn et al.
developed the SafeCard design which is a framework for
network-based intrusion prevention at the network edge
which is able to cope with all levels of abstraction and can
be easily extended with new techniques, Furthermore, it is
capable of reconstructing and scanning TCP streams at Gbps
rates while preventing polymorphic buffer overflow attacks,
Additionally, the CardGuard by Bos et al. in [8] uses IXP1200
network processor as IDS and achieved few hundred Mbps
Ethernet performances when scanning payloads of TCP
connection, In [34], Singh et al. introduce Early-bird
prototype which consists of sensor to detect attacks and
aggregator for administrative reporting and control. Early-
bird can cope with 200 Mbps without packet dropping. In
[12), new work has been introduced by Chris et al. as a
combination between IXP network processors and Xilinx
Virtex FPGAS to build IDS,

V. Finite State Machine

One of the most important tools for the design of hardware
implementation for the DPI is the finite state machine (FSM).
The FSM implementation is classified into two categories
which are the deterministic finite automata (DFA) and
nondeterministic finite automata (NFA), In this section, we

introduce a survey of the research that has been performed

on the FSM including the two categories,

5.1 Nondeterministic Finite Automata

Nondeterministic Finite Automata (NFA) is a directed
graph which has nodes called states and labeled edges to
connect the states, More specifically, the NFA has initial state
and one or more final states, Moreover, the edges can be
labeled with single characters or null(¢) which mean that
multiple states can be active simultaneously in an NFA. The
NFA is very useful in parallel processing because it can
process input character in multi branches of NFA and may
output multi acceptance state for input on the contrary of
DFA [21]. For its usability, there are many efforts to construct
DPI systems which depend on NFA, In [33], Reetinder et al.
were the first how to use the NFA to construct regular
expressions in given text using FPGAs, To match a regular
expression of length n, a serial machine requires O(2")
memory and takes the time complexity of O(1) per text
character, However, they proposed an approach that
requires the O(n’) space and still process a text character in
0O(1) time (one clock cycle). Additionally, they presented a
simple and fast algorithm that quickly constructs the NFA for
the given regular expression, Fast NFA construction is
crucial because the NFA structure depends on the regular
expression, which is known only at runtime, Furthermore,
in [13], Clark et al. implemented FPGA based multi character
decoder for DPI which based on NFA,

5.2 Deterministic Finite Automata

The Deterministic Finite Automata (DFA) consists of a
finite set of input symbols (which are denoted as P), a finite
set of states, and a transition function to move from one
state to the other denoted as &, In contrast of NFA, DFA has
only one active state at any given time [21],

Regular Expression : The regular expression is required as
a need for packet payload inspection to different protocols
packets, It introduces a limited DPI system to deal with all
packets structures. As the result of this limitation, state-of-art

November - 2007_31

x| _ Deep Packet Inspection for Intrusion Detection Systems: A Survey

systems have been introduced to replace the string sets of
intrusion signature with more expressiveness regular
expression (regexp) systems, Therefore, there are several
content inspection engines which have partially or fully
migrated to regexps including the those in Snort [33], Bro
[10), 3com’ s TippingPoint X506 [42], SafeXcel [19], and Cisco
systems [23]. However, using the regexp to represent
patterns includes converting this regexp to Deterministic
Finite Automata (DFA) [21). This DFA is represented in the
DPI systems as table. This table represents the states and
transitions of DFA as records which mean that the
expansion of memory table of DFA of regexp depends on
the size of DFA. Experimentally, DFA of regexp that
contains hundreds of pattem yields to tens of thousands of
states which mean memory consumptions in hundreds of
megabytes, As a solution of one of the common problems
of HW based DPI solutions is the memory access because
the memory accesses for the contents of the on-chip
memory are proportional with the number of bytes in the
packet. In [26], Kumar et al, noted that the implementation
for the regexps of intruder signatures consumes much
memory and there should be a way that reduces the regexp
memory consumption without increasing the number of
memory lookup to operate DPI system which is considered
an additional problem due to the related lookup delay, To
reduce the memory access, they also introduced a delayed
input DFA (DFA) which tries to compact the traditional
DFA for regexp according to that they note some states in

DFA that had the same outgoing transition. For example, if

A

A

(®)

w

-

(a) Aho-Corasick finite state machine (do not include all fail transition)

PRI D ©
00O B OB @

there are two states s1, s2 that introduce transition to the
same outgoing set of stats (S) for set of input characters C,
this transition can be eliminated from state s1 by default
transition DT to s2,

According to this assumption, the state s1 can maintain all
the transition of state s2 via state s1 and then passing to next
state, D2FA constructs a compact DFA which decreases the
memory consumption by DFA, However, compacting the
memory representation by default transition leads to
manipulation of multiple default transition before going to
the next state. Manipulating multiple DTs means that
multiple memory accesses are required which decrease the
DPI process throughput, However, the they (i.e,, Kumar et
al.) found that applying D2FA can reduce the memory
usage dramatically about 95% which helps to implement
DPI in an On-chip memory and that leads to high
bandwidth in memory access and decreases the effect of
multi-transition access by DTs to process input character.
The construction of D’FA from DFA is NP-hard, Therefore,
they introduce heuristic algorithms to find D*FA with
balancing between the depth of DTs and the memory
consumption for D’FA, D’FA construction heuristic based
upon maximum weight spanning tree creates long default
paths [25]. In [27], which are also by Kumar et al., a new
representing for regexp has been developed as an
alternative to D’FA which has the property of being
compressed from DFA and improve the ability of
processing multi DTs to handle input characters by

introducing more information in state identifiers, Content-

(b) Compressed AC

Figure 4. Compressed AC for high speed DPI

32_

FH| _Deep Packet Inspection for Intrusion Detection Systems: A Survey

—

addressed D’FA (CDFA) replaced state identifiers with
content labels that include part of information that would
normally be stored in table entry for the state, The main idea
of CDFA is to exploit the DFA compaction to DFA but on
the other hand is to overcome the multi TDs traversing to
manipulate the input, Notwithstanding, CD’FA needs to
increase the size of the states label to hold more information
about the next state and DTs. So that, there are two
objectives to satisfy: First, to ensure that states have few
labeled transitions. Second, to ensure that default paths are
as small as possible, According to experimental evaluation,
CDFA goes beyond uncompressed DFA. Furthermore,
CD’FA with 1KB cache achieves double throughput than
uncompressed DFA and with 10% of memory requirement,
Aho-Corasick Algorithm : Aho- Corasick Algorithm (AC) [1]
is one of the well known algorithms formulate string
(patterns) matching by encoding intruder pattemns in FSM in
a preprocessing phase, After that, the generated FSM has a
root state which represent that no string has been matched
or even partially matched and all patterns characters are
enumerated from root. If any pattern has same prefix, it
means that the pattern shares a common prefix also with the
corresponding set of parent nodes in the tier, Figure 5

shows a example of the AC

him

Figure 5. Aho—Corasick DFA for patterns
*he”, “she”, “his”, and her”

. Implementation Throughput
Algorithm / Component Device (Gbps)
Parallel Bloom Filters [17) FPGA XCV2000€ 246
Aho-Corasick [3] FPGA 12.35
TCAM [20] TCAM 2
Aho-Corasick/SRAM (2] Network Processor 14
TCAM/FPGA {43] Xilinx Virtex2[51} 10
Modified Aho-Corasick [44] ASIC 8
Selective multi-character transitions -

/FPGA [37] Xilinx XC2v6000-6 14

B-FSM/(FPGA or ASIC) [45] Xilinx Virtex—4 10 “ 20

RTCAM [46] TCAM 12.35

Pre-Decoded CAM [36] Virtex 2-6000 97

Quad Bloom Filter/FPGA [6] Xilinx Virtex4 204

BITWISE CAM [50] FPGA Xilinx XC2v8000| 2.5

FPGA (18] Virtex-4 10
Xilinx Spartan

UCLA Packet/FPGA [11] 3-XC352000 3.2
Xilinx Virtex2-6000&

NFA/(FPGA and IXP) [12] XP 2400 1

aTech Decoder Trees/FPGA [13] Virtex 2-8000 2

WashU Bloom/FPGA (5] Virtex 4~100 204

. Xilinx Vertex-Il Pro

Hash Function [49] XC2VPT0 2

Hash Function and CRC [30] Xilinx Vertex2 2.712 * 4560
Network Processor

TCAM/Network Processor [38] IXDP28xx [22] 10

“she”, “his”, and her"

However, AC construction is very memory consuming as a

FSM construction for patierns ‘he”
result of the huge number of failed transitions that is
proportional with the number of patterns in FSM. Thus,
classical AC takes more storage than it is likely to fit in an
on-chip SRAM or the cache of a processor [44]. Additionally,
in [3], Mansoor et al. constructed a compressed finite state
machine that encodes all the intrusion patterns and makes
state transitions on multiple (at most k) input characters.
Therefore, they start constructing Aho-Corasick DFA as in
Figure 4(a), and then they create an equivalent state
machine called the compressed DFA as illustrated in Figure
4(b) where it has transitions on multiple input characters by
combining k consecutive states of Aho-Corasick DFA,
Conversely, in [40], Lin et al. proposed a new construction
for AC by splitting the input character to bits and
constructing small blocks that represent portion of rules with
portion of bits for each rule, This construction exploits a
speedy on-chip memory to upload the small block of the
system and speeds up the overall system throughput,

November - 2007_33

!
\

Z=H| _ Deep Packet Inspection for Intrusion Detection Systems: A Survey

V1. Comparison between Existing
Modules and Implementations

In this section, we show a comparison between recent
applied IDS with different hardware implementations, Our
comparison focuses on the algorithm, type of hardware
implementations which are used in designing the DPI
architecture and the resulting throughput as illustrated in
Table 1. However, other related properties including the
required memory and other specifications might be referred

in the corresponding reference,

VIl. Conclusion

In this paper, we introduced a survey on some of the
existing and on-going research works on DPI, Our survey
included the challenges and ultimate goals behind the
design of the DPI and its implementations. Also, we
introduced an overview of the existing implementations
including both the software and hardware, As the finite state
machine (or automata) is an important component of the
hardware design, we considered its different classified types
and the ongoing research being performed on each type,
Finally, we introduced a concluding comparison between
the existing modules and hardware implementations and
relating this comparison to the achieved throughput, We
believe that this area of research is still active and several
works need to be performed on the different sides of the
implementation (hardware and software) in addition to the
design of fast matching algorithms that fit to the increasing
demanded throughputs, Our survey is the first step for
putting the readers into the DPI systems and the open

research topics in this field,

34 _xmzer 24

A

[1] A. V. Aho and M. J. Corasick, Efficient string matching:

An aid to bibliographic search. Commun. ACM,
18(6):333 340, 1975.

[2] M. Aldwairi, T. M, Conte, and P, D, Franzon,
Configurable string matching hardware for speeding up
intrusion detection. SIGARCH Computer Architecture
News, 33(1): 99-107, 2003,

3] M. Alicherry, M. Muthuprasanna, and V. Kumar, High
speed pattern matching for network ids/ips. In ICNP,
pages 187-196, 2006.

(4] S. Antonatos, K, G, Anagnostakis, and E, P, Markatos,
Generating realistic workloads for network intrusion
detection systems. In WOSP, pages 207-215, 2004,

(5] M. Attig, S. Dharmapurikar, and J, W. Lockwood,
Implementation results of bloom ?lters for string
matching, In FCCM, pages 322-323, 2004,

6] M. Attig and J. W. Lockwood, Sift: Snort intrusion ?ter
for tcp. In Hot Interconnects, pages 121-127, IEEE
Computer Society, 2005,

(71 Z. K. Bakerand V, K, Prasanna, Automatic synthesis of
e?clent intrusion detection systems on fpgas, In FPL,
pages 311-321, 2004,

8] H. Bos and K, Huang. Towards software-based
signature detection for intrusion prevention on the
network card, In RAID, pages 102-123, 2005,

91 R.S. Boyer and J. S. Moore, A fast string searching
algorithm, Communications of the ACM.,
20(10):761772, 1977.

[10] Bro, Intrusion detection system, http://www,
broids.org/,

(111 Y. H. Cho and W, H. Mangione-Smith, Deep packet
filter with dedicated logic and read only memories,
FCCM, 00:125-134, 2004.

{12] C, Clark, W. Lee, D. Schimmel, D, Contis, M, Kon, and
A, Thomas, A hardware platform for network intrusion

Z=A| _ Deep Packet Inspection for Intrusion Detection Systems: A Survey

detection and prevention. In Third Workshop on
Networlk Processors and Applications, Madrid, Spain,
2004,

f13) C. R. Clark and D, E. Schimmel. Scalable pattern
matching for high speed networks, In IEEE Symposium
on Field-Programmable Custom Computing Machines,
(FCCM), pages 249-257, 2004,

(14] C. Coit, S, Staniford, and J, McAlemey, Towards faster
string matching for intrusion detection or exceeding the
speed of snort. In DARPA Information Survivability
Conference & Exposition Il pages 367- 373, 2001.

[15] B. Commentz-Walter, A string matching algorithm fast
on the average, In Proceedings of ICALP, page 118132,
1979.

{16] W. de Bruijn, A. Slowinska, K. van Reeuwik,

T. Hruby, L. Xu, and H. Bos, Safecard: A gigabit ips on the
network card, In RAID, pages 311-330, 2006,

(17} S. Dharmapurikar, P, Krishnamurthy, T, S. Sproull, and
J. W. Lockwood, Deep packet inspection using parallel
bloom filters, JEEE Micro, 24(1):52-61, 2004,

{18] S. Dharmapurikar and J. Lockwood. Fast and scalable
pattern matching for content filtering, In ANCS 05:
Proceedings of the 2005 symposium on Architecture for
networking and communications systems, pages 183 -
192, 2005,

(191 S. C. 1. Engine, Hardware regex acceleration ip,
http://safenet-inc, com/Library/3/SafeXcel4850
ProductBrief. pdf,

(20] Y. Fang, R. H, Katz, and T. V. Lakshman, Gigabit rate
packet pattern-matching using tcam, In ICNP, pages
174-183, 2004.

[21] J. E. Hopcroft, J. D, Ullman, and R, Motwani,
Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 2001,

[22] Intel. Intel 2800 network processor, hardware reference
manual, Jan, 2004,

(23] C. IOS. Intrusion prevention systems deployment guide,

http://www.cisco,conv/,

{24] D. Knuth. The Art of Computer Programming: Semi-
numerical Algorithms, volume Vol.2, third edition.
Addison-Wesley, ISBN: 0-201-89684-2, 1997.

[23) J. Kruskal, On the shortest spanning subtree of a graph
and traveling salesman problem, The American
Mathematical Society, 7:45-50, 1956.

{26] S, Kumar, S, Dharmapurikar, F, Yu, P, Crowley, and J.
S. Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection, In
SIGCOMM, pages 339-350, 2006,

[27) S. Kumar, J. S. Turner, and J. Williams, Advanced
algorithms for fast and scalable deep packet inspection.,
In ANCS, pages 81-92, 2006.

{28] L7-filter. Application layer packet classifier,
http://7filter. sourceforge net/.

[29] K. Lakshminarayanan, A, Rangarajan, and S,
Venkatachary, Algorithms for advanced packet
classi?cation with temary cams, In SIGCOMM, pages
193-204, 2005,

{30} G. Papadopoulos and D. N, Pnevmatikatos. Hashing +
memory = low cost, exact pattern matching, In FPL,
pages 39-44, 2005,

[31] M. Rash, A. D. Orebaugh, G. Clark, B, Pinkard, and],
Babbin. Intrusion Prevention and Active Response:
Deploying Network and Host IPS, Syngress, 2005,

{32] S. Rubin, S. Jha, and B. P, Miller, Protomatching
network tra?c for high throughput network intrusion
detection, In ACM Conference on Computer and
Communications Security, pages 47-58, 2006,

(33] R. Sidhu and P. V. K, Fast regular expression matching
using fpgas. In FPL, pages 484-493, 2004,

(34] S. Singh, C. Estan, G, Varghese, and S, Savage,
Automated worm ?ngerprinting, In OSDI, pages 45-60,
2004,

[35] SNORT, Network intrusion detection system,
hitp://www snort, org/.

(36] 1, Sourdis and D, Pnevmatikaios, Pre-decoded cams for

e?cient and high-speed nids pattern matching, In

November - 2007_35

=8| _ Deep Packet Inspection for Intrusion Detection Systems: A Survey

FCCM, pages 258-267, 2004,

{37] Y. Sugawara, M, Inaba, and K, Hiraki. Over 10gbps
string matching mechanism for multi-stream packet
scanning systems. In FCCM, IEEE, pages 227-238,
2001,

[38] J.-S. Sung, eok Min Kang, Y, Lee, T.-G, Kwon, and B.-
T. Kim, A multi-gigabit rate deep packet inspection
algorithm using tcam, In GLOCOM, pages 453- 457,
2005,

(39] J.-S. Sung, S.-M. Kang, and T .-G, Kwon, A fast pattem-
matching algorithm for network intrusion detection
system, In Networking, pages 1157-1162, 2006.

[40] L. Tan, B. Brotherton, and T. Sherwood. Bit-split string-
matching engines for intrusion detection and
prevention, TACO, ACM, 3(1):3-34, 2000,

[41] D. E. Taylor, Survey and taxonomy of packet
classi?cation techniques, ACM Comput. Surv., 37(3):238-
275, 2005,

{42] TippingPointX0506. Tipping-point intrusion prevention
systems. http://www _tippingpoint.com/products
ips.html,

(43} G. Tripp. A finite-state-machine based string matching
system for intrusion detection on high-speed networks,
In EICAR 2005 Conference Proceedings, pages 26-40,
May 2005,

[44] N. Tuck, T. Sherwood, B. Calder, and G, Varghese,
Deterministic memory-eficient string matching
algorithms for intrusion detection, In INFOCOM, 2004,

[45] J. van Lunteren, High-performance pattem-matching for
intrusion detection, In INFOCOM, 2006,

[46] Y. Weinsberg, S. Tzur-David, D, Dolev, and T, Anker.
High performance string matching algorithm for a
network intrusion prevention system (nips), In HPSR,
pages 7-pp, 2006,

[471 P, Wheeler and E. W, Fulp. A taxonomy of parallel
techniques for intrusion detection, In ACM Southeast
Regional Conference, pages 278-282, 2007.

(48] S. Wu and U, Manber, A fast algorithm for multi pattern

36

searching. Technical Report TR-94-17, Department of
Computer Science, University of Arizona, 1994,

{491 S, Yoon, B, Kim, and J. Oh, High-performance stateful
intrusion detection system, In IEEE, Computational
Intelligence and Security, volume Q1, pages 574-579,
2006, .

[50] S. Yusuf and W Luk. Bitwise optimised cam for

network intrusion detection systems. In FPL, pages
444449, 2005,

[51) Virtex-I Platform FPGAs: Complete Data Sheet. 20035,
http://direct. xilinx, com/bvdocs/publications/ds031. pdf.

received B Eng. degree in computer engineering from the
Islamic University of Gaza in 2005, His research interests lie
within the computer and networked systems security, He is a
student member of IEEE, and IEEE Computer Society.,

Tamer AbuHmed

received B Eng, degree in computer engineering from the Islamic
University of Gaza in 2005 and M Eng, degree in information
technology and telecommunications from inha University in
2007. His research interests lie within the computer and
networked systems security at large. He is a student member of
IEEE, ACM and IEEE Computer Society.

| Abedelaziz Mohaisen

received the B Eng. degree in electronic engineering from Korea
Advanced Institute of Science and Technology, M.S. and PhD,
degrees in computer science from Yonsel University, Korea on
k1094, 1996, and 2000 respectively. He has been a senior
member of engineering staff of Electronics and
Telecommunications Research Institute, Korea from 2000 to
2003, Since 2003, he has been an assistant professor of the
ng graduate school of Information Technology and
Telecommunication at Inha University, Korea, He is also a
consuttant for Korean Information Security Agency, member of board of directors and
editorial board of Korean Institute of Information Security and Cryptology. Dr. Nyang' s
research interests include cryptography and information security, privacy, biometrics and
their applications to authentication, public key cryptography. Also, he is interested in the
security of WLAN, RFID, WSN, and MANET,

I DaeHun Nyal

