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Improved Prediction of Coreceptor Usage and Phenotype of HIV-1 Based on
Combined Features of V3 Loop Sequence Using Random Forest
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HIV-1 coreceptor usage and phenotype mainly determined by V3 loop are associated with the disease pro-
gression of AIDS. Predicting HIV-1 coreceptor usage and phenotype facilitates the monitoring of R5-to-X4
switch and treatment decision-making. In this study, we employed random forest to predict HIV-1 biological
phenotype, based on 37 random features of V3 loop. In comparison with PSSM method, our RF predictor
obtained higher prediction accuracy (95.1% for coreceptor usage and 92.1% for phenotype), especially for
non-B non-C HIV-1 subtypes (96.6% for coreceptor usage and 95.3% for phenotype). The net charge, polarity
of V3 loop and five V3 sites are seven most important features for predicting HIV-1 coreceptor usage or
phenotype. Among these features, V3 polarity and four V3 sites (22, 12, 18 and 13) are first reported to
have high contribution to HIV-1 biological phenotype prediction.
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Human Immunodeficiency Virus Type 1 (HIV-1) infection
requires two cellular receptors, CD4 and a chemokine re-
ceptor (known as coreceptor). In vivo, the most important
coreceptors are CCRS5 and CXCR4. According to the dif-
ferential use of two major coreceptors, HIV-1 was classified
into three biological variants, RS, R5X4, and X4 (Berger et
al., 1998). The RS strains use CCRS, X4 strains use CXCR4,
and R5X4 strains use both coreceptors. Furthermore, accord-
ing to their replication rate and ability to induce syncytia in
MT?2 cells, HIV-1 is classified phenotyically into syncytium-
inducing (SI) and non-syncytium-inducing (NSI) (Tersmette
et al., 1988). HIV-1 strains of NSI and R5 appear to have
identical biological properties and are generally associated
with slow replication rate and low virulence. SI and X4/R5X4
viruses also show similar phenotype and have rapid repli-
cation rate and high virulence (Bjorndal et al, 1997). The
disease progression of AIDS is generally associated with a
switch in coreceptor usage from CCRS (R5) to CXCR4
(X4) (Richman and Bozzette, 1994; Connor et al., 1997).
Therefore, predicting the emergence of X4 has potential
value for understanding pathogenesis, monitoring disease
progression and making treatment decisions.

The V3 loop of HIV-1 gpl20, a disulfide-linked loop of
approximately 35 amino acids, makes direct contact with
the coreceptor and plays a dominant role in determinant of
vial coreceptor usage and phenotype (Hwang et al., 1991;
Shioda et al., 1991). Several amino acid substitutions in V3
loop (e.g. at positions 11 and 25) and total net charge of
V3 loop frequently determine viral corecptor usage and
phenotype (De Jong et al., 1992; Fouchier et al., 1992; Xiao
et al., 1998). Positively charged residues at positions 11 and
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25 and an increasing net charge of the V3 are strongly asso-
ciated with X4 strains (Brelot et al., 1999). Therefore, bio-
informatics approaches based on V3 sequences have been
developed for predicting HIV-1 biological phenotype (Jensen
and Van't Wout, 2003). Based on several special residues
(especially amino acid profiles at V3 sites 11 and 25) or net
charge of V3 loop, these approaches employed a multiple
linear regression (Briggs et al., 2000), a neural network strat-
egy (Resch et al, 2001), a machine-learning method (Pillai
et al., 2003), or a position-specific scoring matrix (PSSM)
(Jensen et al., 2003; Jensen et al., 2006), to predict HIV-1
coreceptor usage and phenotype. PSSM approach appears
to have better predictive power over other methods (Jensen
and Van't Wout, 2003). Apart from the machine-learning
method, however, they are limited to predict two major sub-
types B and C.

Random forest (RF), a robust classifier developed by
Breiman (2001), was demonstrated to have better perform-
ance over other machine learning approaches (Svetnik et
al., 2003). In this study, we employed RF to predict the
coreceptor usage and phenotype of HIV-1, based on 37
random features, including 35 amino acid profiles, total net
charge and polarity of V3 loop. In comparison with PSSM,
our method obtained better performance especially for non-B
non-C subtypes. Different from previous observation, the total
net charge and polarity of V3 loop are most important con-
tributors together with residues at five V3 sites 22, 25, 11,
12 and 13 to R5/X4 prediction and together with residues
at another five V3 sites 11, 18, 13, 24 and 22 to NSI/SI
prediction. Furthermore, four sites 22, 12, 18 and 13 are
first reported to have high contribution to HIV-1 biological
phenotype prediction.
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Materials and Methods

Data sets

All available HIV-1 V3 sequences with known coreceptor
usage or phenotype were retrieved from the Los Alamos
HIV Sequence Database (http://www.hiv.lanl.gov/content/hiv-
db/mainpage.html) in June 2007. To generate the R5/X4
data set, a total of 2684 V3 sequences associated with known
coreceptor usage, including all available HIV-1 subtypes and
recombinant forms, were downloaded from this Sequence
Database. Of them, 1516 peptide sequences (including 1132
RS and 384 X4 sequences) were randomly selected as train-
ing data set for training our RF prediction model. After
deletion of all duplicate sequences from remainder 1168 V3
sequences, 651 unique sequences were used to test the val-
idity of our RF predictor for coreceptor usage. For NSI/SI
prediction, the data set including 1901 V3 sequences was
used. A subset of 1073 sequences (including 735 NSI and
338 SI sequences) was randomly selected as training data
set for training RF prediction model. Of remainder 828 V3
sequences, 432 unique sequences were used to test the val-
idity of our RF method for phenotype prediction.

To compare with PSSM method, the same testing data
sets were used. The PSSM scores were calculated using the
online PSSM tool (http://ubik.microbiol.washington.edu/com-
puting/pssm/) (Jensen et al., 2003; Jensen et al., 2006).

Random forest and random features
Random forest (RF) is a robust classifier consisting of an en-
semble of unpruned classification or regression trees (Breiman,
2001). RF classifier uses bagging and random feature se-
lection in tree induction. In bagging, each tree is trained on
a bootstrap sample of the training data. To obtain a low-
bias tree (unpruned tree), RF randomly selects a subset of
features to split at each node. Then, prediction is made by
aggregating (majority vote or averaging) the predictions of
the ensemble. To assess the prediction performance, RF
performs a type of cross-validation in parallel with the train-
ing step by using the so-called out-of-bag (OOB) samples.
The V3 loop contains approximately 35 amino acids (with
a scope of 33-37 residues). In order to obtain consistent V3
alignment in length, each V3 peptide sequence was aligned
with typical 35-residue V3 sequences using CLUSTAL W
1.83 (Thompson et al., 1997), and residues representing in-
sertions with respect to the typical sequences were discarded
and gaps were retained. The amino acid profiles or gaps at
35 retained V3 sites were used as random features of RF
predictor together with the net charge of V3 loop. In addi-
tion, we also introduced a new feature, the polarity of V3
loop into the RF model for improving prediction power.
The net charge and polarity were calculated according to
intact V3 loop using AAindex database(Kawashima et al,
1999). Then, the importance of 37 features (including net
charge, polarity, and 35 amino acid profiles) of V3 loop in
prediction models of HIV-1 biological phenotypes was eval-
uvated using RE.

Evaluation of the predictive performance
The final performance of RF method was determined by
measuring the sensitivity (SE), specificity (SP), total predic-
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tion accuracy (ACC) and Matthew’s Correlation coefficient
(MCC). The SE, SP, ACC and MCC parameters were cal-
culated using Eqs. (1), (2), (3) and (4), respectively. In addi-
tion, by Bayes' theorem, the positive predictive value (PPV),
which is the probability that a sequence predicted to be
X4(R5) is in fact X4(RS), was also calculated using Eq (5).

ACC= e pPT AW M
Sp= s @)
Se= o 3)
Mee= V(TP+ FP) x(gj ﬁ]“jvv)—x?;;fjf\;\f) X (IN+ FP) )
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Where TP is true positives (e.g. X4 predicted as X4); FN is
false negatives (e.g. X4 predicted as R5); TN is true negatives
(e.g. non-X4 predicted as R5); FP is false positives (e.g. R5
predicted as X4) and P is the pre-test probability of X4
(R5).

The software package for HIV-1 coreceptor usage and phe-
notype prediction

Our RF predictor (named as R5/X4-pred) and the testing
data set are freely available at http://yjxy.ujs.edu.cn/R5-X4
pred.rar and http://yjxy.ujs.edu.cn/Testing data set.rar, re-
spectively.

Results and Discussion

The RF prediction performance and the comparison with
PSSM method

Several bioinformatic approaches have been previously de-
veloped to predict HIV-1 receptor usage and phenotype,
and PSSM method appeared to have the best performance
(Jensen and Van't Wout, 2003). PSSM method is based on
position-specific scoring matrices and is best applicable to
HIV-1 subtypes B and C (Jensen et al., 2003; Jensen et al.,
2006). So, we divided our testing set into three subsets, in-
cluding B-subtype set, C-subtype set and non-B non-C data
set, and compared our RF predictor with PSSM using the
three subsets. When HIV-1 subtype-B and -C data sets were
used, RF method for coreceptor usage was able to predict
with 94% total prediction accuracy (ACC) and 0.83 MCC
value for subtype B viruses and with 96.7% ACC and 0.86
MCC value for subtype C viruses (Table 1), both of which
are better than that of PSSM method. In particular, when
non-B non-C subtype data set was used, RF predictor ap-
peared to have the best performance with 96.6% ACC and
0.93 MCC value, also significantly better than PSSM (Table
1), suggesting its wide applicability for different HIV-1
subtypes. For HIV-1 phenotype prediction, our RF method
also appears more excellent performance than PSSM espe-
cially for non-B non-C HIV-1 subtypes (95.3% ACC and
0.87 MCC value) (Table 2). The excellent prediction accuracy
of RF method indicates that extracting more information of
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Table 1. Comparison
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of our RF method with PSSM method for HIV-1 coreceptor usage prediction

Subtype Method ACC (%) Sp (%) Se (%) MCC PVV (%)
RF 94 98.3 80 0.83 98.2
B PSSM 89.4 98.3 60 0.69 95.4
RF 96.7 100 76.5 0.86 100
¢ PSSM 925 95.1 76.5 0.7 90.5
Non-B, Non-C RF 96.6 96.7 96.4 0.93 99.7
PSSM 86.3 86.8 85.5 0.71 94.4
RF 95.1 98.4 85.2 0.87 98.9
Al PSSM 89.2 95.5 70.4 0.7 92.9
Only the X4 prediction results were shown.
Table 2. Comparison of our RF method with PSSM method for HIV-1 phenotype prediction
Subtype Method ACC (%) Sp (%) Se (%) MCC PVV (%)
RF 90.6 90.4 90.9 0.8 97.4
i PSSM 89.6 91.1 87 0.78 96.5
RF 92 98.9 60 0.7 96.1
¢ PSSM 90.3 9.5 80 0.69 90.4
Non-E, Non-C RF 95.3 96.3 923 0.87 98.7
PSSM 90.7 91.4 88.5 0.76 95.6
RF 92.1 94.5 86.2 0.81 97.0
Al PSSM 90 91.6 86.2 0.76 95.5

Only the SI prediction results were shown.

V3 sequences, rather than only dependent on one or two
features (e.g. net charge or positively-charged residue at V3
sites 11 and 25), obviously enhances the prediction power
of HIV-1 coreceptor usage and phenotype.

Estimating and ranking the feature importance

Decision tree is able to select important ones from many
relevant and irrelevant features, and reveals the relationship
between features and predictions by an explicit model. A
measure of feature importance with respect to its contribution
to the prediction performance of random forest can be pro-
vided by mean decrease accuracy, which is calculated in the
course of training (Breiman, 2001; Svetnik ef al., 2003). In
our RF method for predicting HIV-1 coreceptor usage and
phenotype, the importance of each feature of V3 loop is
shown in Table 3. The total net charge and polarity of V3
loop, as well as five V3 amino acid sites are the top seven
features that mainly determine HIV-1 coreceptor usage or
phenotype. As expected, total net charge is the most impor-
tant contributor in our RF prediction method. The polarity
of V3 loop firstly introduced by us into prediction method
is the third most important feature influencing the predic-
tion accuracy of HIV-1 coreceptor usage and phenotype. In
addition, among these top features, three sites 11, 22 and
13 were observed in both RF prediction models, indicating
their crucial roles in prediction of HIV-1 coreceptor usage
and phenotype (Table 3). Surprisingly, however, the V3 sites
11 and 25, both of which were considered as very important

factors in previous prediction approaches (De Jong et al,
1992; Fouchier et al., 1992; Xiao et al., 1998; Briggs et al.,
2000; Resch et al., 2001), are not ranked in top three fea-
tures of RF predictor for HIV-1 receptor usage. Furthermore,
in HIV-1 phenotype prediction model, V3 site 25 only ranks
eighth in all 37 random features, also showing less impor-
tance for prediction (Table 3). These results provide a pos-
sible interpretation of low prediction accuracy of previous
approaches based on the appearance of positively charged
mutations at V3 sites 11 and 25 (Jensen and Van't Wout,
2003).

The characteristics of HIV-1 V3 loop sequences with dif-
ferent coreceptor usages and phenotypes

Because of the importance of net charge and polarity of V3
loop in viral phenotype and coreceptor usage, the charac-
teristics of 2684 R5/X4 sequences and 1901 NSI/SI sequences
were analyzed. The net charge distribution for both data
sets is shown in Fig. 1A. The distributions of net charge
appear to be consistent between RS and NSI viruses and
between X4 and SI viruses. Approximate 90% of R5 and NSI
V3 sequences have low net charge scores of <4. Contrarily,
more than 90% of X4 and SI V3 sequences have the scores
of net charge more than 4. Furthermore, the X4 (5.17£0.05)
and SI (5.4220.06) viruses have significantly higher net charge
scores than R5 (3.41x0.02) and NSI (3.36+0.02) viruses
(P<0.0001) (Fig. 1A) (Xiao et al., 1998; Jensen et al., 2006).
Increasing total net charge of V3 loop facilitates the recog-
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nition of HIV-1 Gp120 to CXCR4 via an electrostatic inter-
action between V3 loop and the negatively charged CXCR4,
which accelerates the coreceptor switch from R5 to X4 and

Table 3. Estimating and ranking the relative importance of the
features

R5/X4 Model NSI/SI Model
Rank Features MDA (%) Features MDA (%)
1. Net charge 8.41 Net charge 4.01
2. V3 site: 22 5.85 V3 site: 11 3.73
3. Polarity 4.03 Polarity 2.53
4. V3 site:25 3.74 V3 site: 18 1.01
5. V3 site:11 3.28 V3 site: 13 0.96
6. V3 site:12 2.04 V3 site: 24 0.88
7. V3 site:13 1.91 V3 site: 22 0.76
8. V3 site:7 1.83 V3 site: 25 0.76
9. V3 site:24 1.59 V3 site:7 0.59
10. V3 site:5 1.57 V3 site:8 0.58
11. V3 site:18 1.55 V3 site:19 0.55
12, V3 site:10 1.39 V3 site:34 0.50
13. V3 site:8 1.10 V3 site:32 0.48
14. V3 site:19 1.05 V3 site:10 0.46
15. V3 site:2 1.04 V3 site:23 045
16. V3 site:32 1.03 V3 site:27 0.45
17. V3 site:20 0.83 V3 site:14 0.44
18. V3 site:14 0.82 V3 site:20 0.43
19. V3 site:34 0.65 V3 site:16 0.41
20. V3 site:29 0.57 V3 site:2 0.39
21. V3 site:27 0.53 V3 site:12 0.30
2. V3 site:l6 042 V3 site:29 0.29
23. V3 site:6 0.28 V3 site:5 0.24
24, V3 site23 0.24 V3 site:21 0.23
25. V3 site:30 0.24 V3 site:30 0.15
26. V3 site:26 0.18 V3 site:26 0.13
27. V3 site:9 0.17 V3 site:9 0.08
28. V3 site:21 0.16 V3 site:6 0.06
29. V3 site:15 0.09 V3 site:31 0.03
30. V3 site:33 0.02 V3 site:15 0.02
31. V3 site:4 0.01 V3 site:33 0.02
32, V3ite:l 0.01 V3 site:28 0.01
33. V3 site:31 0.01 V3 site:17 0.00
34, V3 site:28 0.00 V3 site:35 0.00
35, V3 site3 0.00 V3 site:l 0.00
36. V3 site:l7 0.00 V3 site:3 0.00
37. V3 ite:35 0.00 V3 site:4 -0.01

MDA, Mean decrease accuracy. MDA measures the feature importance in
terms of the contribution to prediction accuracy. To obtain MDA, the val-
ues of the m™ feature of each tree were rearranged for the out-of- bag set.
Then puts this permuted set down the tree, and gets new classifications for
the forest. The importance of the m® feature, that is MDA, is defined as
the difference of the out-of-bag error rate between randomly permuted m™
feature and original feature.
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phenotype switch from NSI to SI (Brelot et al., 1999).

The polarity analysis of all V3 sequences shows that 88%
of RS and 92% of NSI sequences have the low polarity
scores of <70. The proportions of high polarity scores
(=70) in X4 and SI V3 sequences increase to 47% and 63%,
respectively (Fig. 1B). The V3 loops of X4 (69.97%0.54)
and SI (75.77+0.60) viruses have significantly stronger po-
larity than R5 (60.12+0.21) and NSI (59.72%0.22) viruses
(P<0.0001). Similar to net charge, enhancing polarity of V3
loop accounts for the emergence of X4 and SI viruses pos-
sible also by favoring the recognition of HIV-1 Gp120 to
CXCR4 (Brelot et al., 1999).

To display consensus sequence of each V3 data set, a
graphical representation of these sequences using WebLogo
(Crooks et al., 2004) is shown in Fig. 2. Among variable V3
sites, sites 22, 25, 11, 12, and 13 are the top five sites for
R5/X4 prediction model, and sites 11, 18, 13, 24, and 22 are
the top five sites for NSI/SI prediction model (Table 3).
Amino acid profiles at these sites are distinctly different
between RS and X4 types and between NSI and SI types,
suggesting their importance for HIV-1 coreceptor usage and
phenotype prediction (Fig. 2). In addition, it is worth pointing
out that four sites 22, 12, 18 and 13 are first reported to
have high contribution to HIV-1 biological phenotype pre-
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Fig. 1. Score distributions of net charge and polarity of all V3
sequences. (A) The distribution of total net charge. (B) Polarity
distribution of V3 loop. The polarity of V3 loop is calculated by
summing the polarity score of all amino acids in V3 loop.
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Fig. 2. Sequence logos of V3 sequences used in this study. The
character and size of each logo represent the proportion of an
amino acid at the specific site. The R5 and X4 data sets are repre-
sented by 2012 R5 and 672 X4 V3 sequences, respectively. The NSI
and SI data sets correspond to 1306 NSI and 595 SI V3 sequences,
respectively. The red arrows highlight the top five sites in V3 loop
that determine HIV-1 coreceptor usage or phenotype.

diction (Fig. 2). Surprisingly, however, the well-recognized
crucial site 25 ranks eighth, implying less contribution to
NSI/SI prediction. Furthermore, other V3 sites, e.g. 19, 23
and 32, that were also demonstrated to play an important
role in HIV-1 R5/X4 and NSI/SI prediction in previous
studies (Milich et al, 1997; Xiao et al., 1998), are ranked in
middle of the relative importance index of features in our RF
prediction, suggesting less importance in HIV-1 biological
phenotype prediction despite that they also have obvious
amino acid variation between R5/NSI and X4/SI (Table 3,
Fig. 2).

Conclusions

We devised an RF-based software (R5/X4-pred) for predict-
ing HIV-1 coreceptor usage and phenotype. It has better
performance over pervious methods especially for non-B
non-C HIV-1 subtypes. The net charge, polarity of V3 loop
and five V3 sites are seven most important features for
predicting HIV-1 coreceptor usage or phenotype. Among
these features, V3 polarity and four V3 sites (22, 12, 18
and 13) are first reported to have high contribution to
HIV-1 biological phenotype prediction. Furthermore, the
R5/X4-pred software is freely available at http://yjxy.ujs.edu.
cn/R5-X4 pred.rar.
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