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Abstract In proteomics, recent advancements in mass spectrometry technology and in protein
extraction and separation technology made high-throughput analysis possible. This leads to thousands
to hundreds of thousands of MS/MS spectra per single LC-MS/MS experiment. Such a large amount
of data creates significant computational challenges and therefore effective data analysis methods that
make efficient use of computational resources and, at the same time, provide more peptide
identifications are in great need. Here, SIFTER system is designed to avoid inefficient processing of
shotgun proteomic data. SIFTER provides software tools that can improve throughput of mass
spectrometry-based peptide identification by filtering out poor-quality tandem mass spectra and
estimating a peptide charge state prior to applying analysis algorithms. SIFTER tools characterize and
assess spectral features and thus significantly reduce the computation time and false positive rates by
localizing spectra that lead to wrong identification prior to full-blown analysis. SIFTER enables fast
and in-depth interpretation of tandem mass spectra.

Key words : Proteomics, tandem mass spectra, peptide identification, spectral quality, charge state

determination

1. Introduction

1.1 Tandem mass spectrometry
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Determining an amino acid sequence of a protein
s - AUt 7 AB R R} is an important step toward identifying the protein
na@uos.ac.kr d elucidati . d f . M
2a8Y  qeAdden AR R BN 2s and elucidating its structure an unction. ass
paek@uos.ac.kr spectrometry (MS) has become a common and
=EES 0 20079 49 30 ; ; :
= useful tool for analyzing complex protein mixtures
AAbgE 20079 6Y 259 yang P P
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[1,2]. Fragmented proteins resulting from protein
digestion, called peptides, are separated by liquid
chromatography (LC). Separated peptides are then
subjected (ESD  and
introduced into a mass spectrometer. Tandem mass
spectrometry (MS/MS or MS2) is used to obtain
peptide sequence information. An isolated peptide,
called precursor ion, is dissociated into fragment
ions by low-energy collision-induced dissociation
(CID), and mass-to-charge ratios (m/z) of ali the
resulting fragment ions are measured by tandem

to electrospray ionization

mass spectrometry.

Figure 1 shows the chemical structure of an
amino acid and a peptide sequence consisting of 4
amino acids. Amino acids are linked by C-N bonds
to form a peptide. An end of a peptide with amine
group (-NHj) is called N-termina!/ and the other
end with carboxyl (-COOH) is
C-terminal, and the convention is to write a peptide

group called
sequence with its N-terminal on the left.

Under CID condition,
fragmented at amide bonds,

a peptide is primarily

resulting into two
complementary ions, an N-terminal ion called b-ion
"and a C-terminal ion called y-ion, as shown in
Figure 2(a). Depending on which amide bond is
cleaved, a peptide may be fragmented at different
sites, resulting in different b- and y-ions. Figure
2(b) shows a notational convention of ions according
to their fragmentation positions. The fragmentation

can occur at any of the bonds as shown by dashed

H R

a) Amino Acid
C-terminal

H O H O H
| (Bl foll ;
! H—Iil—‘.—C—C—-—lT—(IZ——C-N—C——C—l}l——cl—‘v\c—OH,.‘

) ||
H R, H R,

H O
[

.. H/R,  HER

N-terminai b) Peptide

Figure 1 Amino acid and peptide

S8 A A4 A Al 10 3(2007.10)

lines. B-ions correspond to prefix subsequences and
y-ions correspond to suffix subsequences. An
N-terminal ion consisting of a single amino acid is
called b1 and its complementary C-terminal ion
consisting of three amino acids is called y3, and so on.

Tandem mass spectrometry enables measurement
of the mass of every prefix (b-ions) and suffix
(y-ions) fragment of a peptide. From such a series,
it is possible to determine the amino acid sequence,
given an MS/MS spectrum, by considering mass
differences hetween neighboring fragment ion peaks
of the same type. Figure 3 shows a theoretical
MS/MS spectrum of an imaginary peptide PEAK’
consisting of four amino acids, ‘P, ‘E’, ‘A’ and K,
and the ladders formed by all the resulting b- and
y-ions. But in practice, it is difficult to confidently
derive the complete amino acid sequence from an
MS/MS spectrum because fragmentation may not
occur at every amide bond and one cannot know
which peak is either b- or y-ion peak. To make
matters worse, fragmentation may occur at random
positions, resulting in many noise fragment peaks,
thereby making the analysis difficult.
shows the alignment between a peptide TVNE-
VTEFAK' and its experimental MS/MS spectrum.
Peaks corresponding to theoretical fragment ions of
the peptide are shown by dashed lines. It is obvi-
ous that there are many noise peaks in addition to
the peaks at theoretically possible sites. Also, in
the range less than 200 m/z, there are few peaks

Figure 4

~-y-ion {C-terminal ion)

i
.
/
+ I

b-ion (N-terminal ion)- &

a) Fragmentation and lonization into b- and y-ion

y3 y2 y1
Ho /[ H / mo /[ mo
A | PN | A
H——N—C—-—C—,‘-III—('Z——C—/-N—C—C—f—IT—C——C—OH
[ / A I
H R HR / HR,
b1 b2 3
b) Complementary ions

Figure 2 Fragmentation and ionization into b- and y-ion
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Figure 3 Fragmentation and theoretical MS/MS spectrum of an imaginary peptide ‘PEAK’
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Figure 4 Alignment between a peptide and an experimental spectrum

and thus bl and y!/ ions are not aligned with any 1. Model Definition

Spectrum S ; a set of peaks, {p,, p,,..p,}
S={<m,i >1<k<n},
<my,i> denotes p, at m/z m, with intensity i,.

peak in the spectrum.

1.2 Interpretation of tandem mass spectra

Mass spectrometry outputs an MS/MS spectrum
S and a mass of the target peptide P, where P’s A': a set of amino acids,
A= {a;|1<i<20}, (a; € alphabet T)
where |a|= amino acid mass

amino acid sequence is unknown. Interpretation of
an MS/MS spectrum is to derive the sequence of P
from S and the mass of P. The problem definition

. Peptide P : string over amino acids,
is as follows:

P=qga,..q;, (a, € A)
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and |P|= Tyl a;)

2. Problem Definition
Given: M (observed precursor mass), experimental S
Find any P satisfying condition M=|P| and
Compute match score between S and P

Various approaches have been proposed to
automatically interpret MS/MS spectra, and they
are often considered as one of the two different
approaches, database matching and de novo sequ-
encing. These methods are summarized in Figure 5.

Given an experimental MS/MS spectrum, data-
base matching approaches [3,4] try to find a pep-
tide that is most likely to generate the spectrum
against protein sequence databases. Candidate pep-
tide sequences found in a database are converted
MS/MS

fragmentation rule (as shown in Figure 3) and,

into theoretical spectra by  peptide
then they are overlapped with an experimental
MS/MS spectrum using some correlation functions.
cannot
in the

database and their match results often give many

However, database matching approaches

consider unknown peptides that are not

false positives.

|
1

Wiy

Theoretical spectrum

LD

Experimental spectrum

Peptide DB —»
VTAEDKGTGK
RALSSQHOAR
VYADQRPLTK
ETMEKAVEEK
EFFNGKEPSR

-

a) Database matching approach (SEQUEST, Mascot)

SZEO 2 && A A A A 10 500710

De novo sequencing approaches [5,6] directly
infer peptide sequences from experimental spectra
without any resort to a database, and thus can
infer a sequence of an unknown peptide. Usually, it
starts by looking for peak pairs that correspond to
amino acid mass differences. Then, it assembles
selected peak pairs into a complete sequence cor-
responding to peptide mass. In some de novo sequ-
encing methods, a spectrum is transformed to a
directed acyclic graph, where a node represents a
mass of a fragment jon peak and there is an edge
when a pair of nodes differs by a certain amino
acid in mass. A partial sequence of the target
peptide is predicted via finding the longest path in
the graph. Scoring is adopted to quantify how well
a candidate peptide “explains” a spectrum. But,
because the sequencing results provided by de novo
algorithms depend heavily on the quality of spectral
data, it is important to filter out noise peaks prior
to interpretation.

Also, there are efforts to combine the database
matching and de novo sequencing methods for
better These methods first
perform simplified de novo sequencing to find short

interpretation [7-91.

b) De novo sequencing approach (Lutefisk, PEAKS)

mass offset

HE

Wi

-1

Peptide DB
DB Search TTEPKOTANK
€arcn  pAT.SSOHOAR

> vyaEQReLTK
ETMEKAVEEK

EFFNGKEPSR

/

sequence tag

Constraint :
sequence tag + mass offset

c) Sequence tag approach (PeptideSearch, GutenTag)
Figure 5 Methods to interpret MS/MS spectra
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amino acid sequences, called sequence tags, from
an MS/MS spectrum. Then, candidate peptides only
including these sequence tags are searched in the
database.

All the methods introduced above have a differ-
ent scoring scheme for finding the correct peptide
among candidate peptides. Generally, a similarity
score is computed between the theoretical and the
experimental spectrum. The peptide with the high-
est score among candidates is regarded as the
correct match, when its score is considered to be
significant.

1.3 Shotgun proteomics

The discipline of proteomics Involves systematic
identification and characterization of all the proteins
expressed in a biological system, such as a cell or
tissue, and has become a key to determining gene
and cellular function at the protein level. Mass
spectrometry and tandem mass spectrometry allow
rapid and sensitive protein identification from com-
plex biological samples and thus have become a
common and useful tool for analyzing complex

protein mixtures. Recently, proteomics has been
developed as a sequence of steps! protein separation
and digestion, MS-based peptide sequencing and
protein identification. Developments and combination
of each of these steps result in the emergence of
shotgun proteomics, enabling automatic identification
of a great number of proteins per experiment.

In shotgun proteomics, protein identification using
MS/MS [1,2] faces significant computational chal-
lenges. Recent advancements in mass spectrometry
technology made high throughput analysis possible
and thousands to hundreds of thousands of MS/MS
spectra are obtained per single LC-MS/MS ex-
periment. Usually MS/MS spectra are subjected to
database matching tools such as SEQUEST [3] and
Mascot [4], which require fair amount of computa-
tional resources, often in a form of cluster com-
puting. Unfortunately, a significant fraction of
MS/MS spectra cannot be reliably assigned to
peptide sequences and as much as 80 to 90 percent
of the entire spectra are discarded. Therefore,
effective data analysis methods are in great need
so that they make efficient use of computational

resources and, at the same time, their application

results in more peptide identifications and less false
positives.

In order to improve throughput of MS-based
peptide identification, we introduce algorithms to
address needs for spectral quality assessment and
peptide charge state determination. These tools can
be accessed via “SIFTER” web server (http://prix.
uos.ac.kr/sifter/). In Sections 3 and 4, we demon-
strate that SIFTER tools suitably characterize and
and thus
reduce the computation time and false positive

assess spectral features significantly
rates.

This paper is organized as follows. Section 2
presents the computational bottlenecks in MS-based
peptide identification. Section 3 describes imple-
mentation of the proposed algorithms for spectral
quality assessment and peptide charge state deter-
mination. Section 4 reports test results of our

algorithms on experimental data

2. Motivation

2.1 Quality of an MS/MS spectrum

A significant portion of MS/MS spectra cannot
be reliably assigned to peptide seguences and are
discarded. Low resolution MS/MS spectrometry ge-
nerates a large proportion of poor-quality spectra
and therefore the success rate in reliably identifying
peptides is only of the order of 10-20%. Poor
quality spectra are likely to lead to wrong peptide
identifications, making one to waste time in trying
to validate them. Thus, it will be useful if low-
quality spectra that are not likely to lead to any
useful identification can be localized and filtered
out. Recently, there have been a lot of efforts to
assess quality of MS/MS spectra [10-17]. In some
of these works, machine learning approaches are
adopted using various spectral features. Machine
learning methods vary from a genetic algorithm to
a support vector machine, and several different
learning methods are compared in terms of their
performances. Other approaches use a heuristic
score function based on spatial distribution patterns
of peaks and maximum length of peptide sequence
tags.

On the other hand, reasons that so many spectra

are unassigned to peptides include post-translational



894 ARA I =FR  AZE O]

modification (PTM) of a peptide, sequence vari-
ations, incomplete protein database and deficiency in
analysis software. Spectra left unassigned due to
these reasons are of high quality but the current
limitations in software tools require additional ana-
lysis, in order for them to be correctly interpreted.
Spectral quality assessment can be adopted as a
useful measure to determine the necessity of
extended analysis, thus maximizing the amount of
information we can obtain from mass spectrometry
data.

2.2 Charge state of an MS/MS spectrum

Before being introduced into a mass spectrometer,
peptides are ionized by electrospray ionization (ESI).
Electrosprayed peptide ions (precursor ions) are
guided and manipulated by electric fields and their
mass-to-charge ratios (m/z) are determined by
diverse types of mass analyzer, such as time-of-
flight (TOF) and quadrupole mass spectrometry.

In an ESI process, peptide ions can carry more
than one proton (H'), thus multiply charged. Acc-
(CS), an MS/MS
spectrum obtained from a precursor ion m/z (PMZ)

ording to its charge state
can have different peptide masses, calculated by the
definition PMZxCS-(CSx1.0073). Accordingly, when
a charge state of a precursor ion is known, its
exact mass can be determined.

In database matching methods to interpret an
MS/MS spectrum, they first retrieve peptides the
masses of which correspond with the precursor ion
mass and these peptides form a set of candidate
peptides. Here, it is very important to determine a
charge state of a precursor jon to know the
precursor ion mass. However, many common mass
spectrometers, such as ion trap and triple quad-
rupole instruments, have a limitation in their reso-
lution and cannot reliably determine the charge
state of a precursor ion. Thus for a multiply
charged peptide, a common practice is to assume
every possible charge state. For example, if a mass
spectrometry experiment can generate upto 3+
charged ions (can be reliably determined by the
energy level exerted during the experiment), both
2+ and 3+ charge states are assumed. This scheme
leads to repetitive database matching. It not only

greatly increases the overall time for candidate

$4 A 34 A A 10 3(Q007.10)

peptide matching, but also requires additional efforts
to discern the correct match from false positives.
The same difficulty also arises in de novo sequ-
encing approach. There have been various efforts to
determine the charge state of a precursor ion from
an MS/MS spectrum and to reduce computation
time and false positive rate [18-21].

2.3 Improvement of throughput of proteomic data

Analysis of mass spectrometry data can be
regard as a sequence of complex steps, which must
be developed and optimized together in a systems
approach to extract the maximum amount of
information from the entire analysis pipeline. In this
work, we focus on the problem of improving the
throughput of peptide identification by tandem mass
spectrometry. We describe algorithms for assessing
the spectrum quality and determining the charge
state of an MS/MS spectrum before attempting to
identify the peptide. These algorithms can be used
to pre-filter spectra so that only reasonably good
spectra are submitted to time-consuming database
matching programs.

3. ALGORITHMS

3.1 Machine learning approach

We established a separate classification model for
spectrum quality assessment and charge state deter-
mination, by using support vector machine (SVM)
as a machine learning method. Implementation of
SVM was done using SVM-Light, publicly available
at http://svmlight.joachims.org. We used radial
basis function as a kernel function. A training data
set was assembled from ISB protein mixture [22],
which was obtained by mixing together 18 purified
proteins and performing mass spectrometry analysis
on an ESI-ITMS (ThermoFinnigan, San Jose, CA).
Classifiers for quality assessment and charge state
determination were each trained and tested using
5-fold cross validation. In this work, we mainly
focus on algorithms for multiply charged spectra
because singly charged spectra constitute only a
small fraction of the entire set and can be distin-
guished from multiply charged spectra using simple
heuristic rules.

3.2 MS/MS Spectral Quality Assessment

A newly proposed intensity normalization method,
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called ‘cumulative intensity normalization’ that con-
siders both the magnitude of individual fragment
ion peaks and their ranking in raw intensities and
thus overcomes the shortcomings of existing norma-
lization methods is used [17]. When applied to a
scoring scheme, cumulative intensity normalization
shows higher precision relative to other normali-
zation methods. In addition to providing a better
scoring scheme, cumulative intensity normalization
can also be useful when estimating the quality of a
spectrum. A novel spectral feature, named ‘Xrea’,
measures patterns in peak intensity distribution of
a spectrum based on the properties of cumulative
intensity normalization [17].

Of 36,540 peptide assignments by SEQUEST
analysis (multiply charged spectra were matched
twice against a protein database, assuming 2+ and
3+ charge state) over ISB dataset containing about
19,000 multiply charged MS/MS 2,640
spectra are determined as correctly assigned to a
peptide and are labeled GOOD (identifiable). The
remaining spectra are labeled BAD. The training
and test datasets consist of 2,640 and 2,688 spectra
of GOOD and BAD, respectively. The learned clas-
sifier from SVM is tested using over 30,000 spectra

spectra,

to identify those spectra that are likely to have a
significant match to a peptide. Figure 6 shows the
overall performance of the classifier for MS/MS
quality assessment by means of receiver operator
characteristic (ROC) curve. The inset box shows
ROC curve when more than 90% of GOOD spectra
are kept. By assessing the quality of each spectrum
using the classifier, we could filter out as much as
80% of unidentifiable spectra while losing only 10%
of identifiable spectra. Even if only 5% loss of
GOOD (identifiable) spectra is allowed, our method
can filter out about 70% of BAD (unidentifiable)
spectra. Table 1 shows the performance comparison
[11] When the
same percent of GOOD spectra are kept, a fraction

of our method with Bern et. al
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Figure 6 ROC curve for a classifier tested on ISB
dataset

of BAD spectra being filtered out are shown. Our
method shows performance improvement over the
existing method.

3.3 MS/MS Charge State Determination

When a precursor ion is multiply charged, its
MS/MS spectrum includes both singly and doubly
charged fragment ions. Doubly charged precursor
ions most often dissociate into two singly charged
fragment ions. In contrast, triply charged precursor
ions dissociate into two charged fragments, namely,
singly and doubly charged ions [23]. Based on this
observation, our algorithm is designed to differ-
entiate doubly charged spectra from triply charged
ones, by utilizing abundance of differently charged
fragment ions in different m/z ranges of a spec-
trum that results from a dissociation pattern of
multiply charged precursor ions. Figure 7 shows
relative abundances of different types of ions at
different ranges for doubly and triply charged
spectra. Singly and doubly charged b/y ions were
identified from each spectrum according to the

assigned sequence. Abundances of fragment ions at

Table 1 Performance comparison with other method in spectrum quality

% Correct % Correct
Called GOOD Called BAD Called GOOD Called BAD
SIFTER 90% 80% 95% 70%
Ref.11 90% 75% 95% 60%
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each range are different depending on a peptide
charge state. Many ions are identified at [PMZ,
3/2PMZ], where PMZ is precursor ion m/z. Peptide
charge state can be estimated by comparing abun-
dances of fragment ions at each range. To measure
the abundance of potentially meaningful fragment
ions in different ranges of a spectrum, we calcu-
lated how likely a pair of fragment ion peaks differ

by the mass of an amino acid in the spectrum.

Intensity sum (median) Intensity sum (median)
0.1 0.1

wbr Hy*
Zb2 @y

Hbt Hyr
7L gy g0

Triply
Charged

Precursor
0.06

0.0

£ 0.00- M7 i
[0, PMZ]  [PMZ, 3/2PMZ) [/2PMZ, END) [0, PMZ]  (PMZ, 3/2PMZ] [W2PMZ, END]

Figure 7 Relative abundances of different types of
ions at different ranges for doubly and

triply charged spectra

For an SVM classifier, training and test datasets
consisting of 1,950 spectra (975 doubly and triply
charged spectra each) obtained from ISB dataset
were used, and their peptide and charge state
assignments were determined to be correct by
manual inspection. Figure 8 shows the overall
performance of the classifier for MS/MS charge
state determination in terms of estimated score
distribution. A positive value indicates that the
precursor ion is estimated as doubly charged and a
negative value indicates that the precursor ion is
predicted as triply charged. Score O (dashed line)
separates doubly and triply charged spectra into
two groups. We obtained good separation between
doubly and triply charged spectra. “Black” repre-
sents a distribution of doubly charged spectra and
“gray”, triply charged spectra. When the threshold
for distinguishing doubly charged spectra from
triply charged ones is fixed to score 0, the overall
specificity is 93.1% (92.4% for doubly charged
spectra and 93.8% for triply charged
allowing data reduction almost in half. Table 2

spectra),

shows the performance of our methods and others.
Reference 19 and 20 provide performance results on

three different datasets, and what is shown here is

200A

150

Number of Spectra
-
8

v

2 -1 0 1 2
Estimated Score

Figure 8 Distribution of scores of MS/MS spectra
from ISB dataset

Table 2 Performance comparison with others in

charge state determination

Correct
+2 +3 +2 or +3 (Not assigned CS)
SIFTER 924% 93.8% na
Ref.19 9Q0.1% 7279% 12.9%
Ref.20 83.5% 93.9% na

the best performance by each. Our results generally
show performance improvement over the existing
methods by 2~20%.

3.4 implementation

Tools for MS/MS pre—filtering and MS/MS charge
state determination are made available on the web
(http://prix.uos.ac.kr/sifter/). As an input, they take
a set of spectra in a compressed file format such
as *.zip, *.tgz or *.tar.gz, or *.mzXML file format,
a de facto standard exchange format for mass spec—
trometry data. Each spectrum must comply with
SEQUEST file format (DTA). As an output, an
estimated quality score (real number) for each spec-
trum is given and one can proceed to submit these
quality values to pre—filtering or charge state deter-
mination. For spectral quality assessment, a positive
score represents good quality and a negative value
represents poor quality. If the “score as doubly cha-
rged” is greater than 0, the spectrum is a doubly
charged one with good quality, while if the score is
less than 0, it is a poor quality spectrum that has
to be filtered out. For charge state determination, a
positive score indicates that a precursor ion is dou-—
bly charged and a negative score indicates a triply

charged precursor ion.



Wl T2ee doletg AR E A3y A% AT SN AzH 897

4. RESULTS AND DISCUSSION

SIFTER tools were tested against various MS/
MS datasets from ion trap instruments, available
from PeptideAtlas data repository (http://www .pepti-
deatlas.org/repository). One dataset was obtained
from Human Erythroleukemia K562 cell line [24],
analyzed on an LCQ Classic ion trap mass spec-
trometer (ThermoFinnigan, San Jose, CA), and was
used to validate the performance and usefulness of
MS/MS pre-filtering tool.
obtained from bronchoalveolar lavage fluid (BALF)
[25], analyzed on an LCQ DECA ion trap mass
spectrometer (ThermoFinnigan, San Jose, CA), and

Another dataset was

was used for MS/MS charge state determination
tool. Two datasets were analyzed using SEQUEST
against the IPI human protein database to obtain
peptide identification.

4.1 MS/MS Spectral Quality Assessment

Of the 126,702 spectra obtained from Human Ery-
throleukemia K562 cell line dataset, 4,679 were
labeled GOOD (identifiable) and 122,023 were labeled
BAD (unidentifiable). Figure 9 shows a distribution
of quality estimation scores generated by SIFTER
MS/MS pre-filtering tool.

scores are good quality spectra while spectra with

Spectra with positive

negative scores are deemed to be of poor quality
that can be filtered out prior to database search.
“Black” represents GOOD spectra and “gray’ re-
presents BAD ones. By setting the cutoff value for
classifying good and bad quality spectra as 0, we
reported that 65% of unidentifiable spectra could be
filtered out while losing only 4% of identifiable
spectra. When analyzing H. K562 dataset using

Number of Spectra

(=) | S <SGy,

v

1

Quality Score

Figure 9 Distribution of quality scores of spectra from
Human Erythroleukemia K562 cell line

SEQUEST, it takes about 3 seconds per spectrum
to match against IPI human database (33MB) with
trypsin digestion on a regular Pentium IV 3.0 GHz
PC, thus taking a total of 105 hours. On the other
hand, MS/MS pre-filtering process of the dataset
required only a few minutes and the subsequent
analysis only with selected high-quality spectra
(47,012/126,702) by MS/MS pre-filtering took 39
hours on the same PC. While saving many hours
of analysis time, it maintained a 96% of peptide
identifications (4,487/4,679).

4.2 MS/MS Charge State Determination

Of the 86,107 peptide assignments (43,389 doubly
charged and 42,718 triply charged) from SEQUEST
analysis over 43,389 multiply charged spectra of
BALF protein dataset, 3,279 assignments to doubly
charged spectra and 2,480 assignments to triply
charged spectra were validated with PeptideProphet
[26] using a probability cutoff of 0.9. Figure 10(a)
shows the estimated score distribution of doubly
charged (black), triply charged (gray) and unassigned
(dashed) spectra by the default classifier of SIFTER’s
We obtained a
precision of 87.1% (91.6% for doubly charged spec-
tra and 81.1% for triply charged spectra).

charge state determination tool.
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Figure 10 Application of the proposed two-step
classification
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Here, it must be noted that different datasets are
variable in their spectral properties and thus a clas-
sifier needs adaptation depending on datasets from
different experiments. In order to have a classifier
that is well-versed with variations in different data-
sets, we suggest a two-step strategy. First, a data-
set is classified by the default classifier (Figure
10(a)). With high-confidence data from the first
classification, a dynamic classifier specific to the
characteristics of the target dataset is implemented.
Second, the data are reclassified based on the new
dynamic classifier. Figure 10(b) shows the final
separation of doubly and triply charged spectra by
the new dynamic classifier implemented from what
is shown in Figure 10(a). We assigned 92.5% of
spectra, 94.9% of doubly charged spectra and 89.3%
of triply charged spectra, to the correct charge
state. On the web server, one can select either
(using the default SIFTER classifier) or
two-step option, when using MS/MS charge state

basic

determination tool. The two-step option is available
only when the size of the submitted dataset is
large enough to assure reasonable training.

Existing analysis schemes using low resolution
MS/MS instruments have assumed every possible
charge state for a multiply charged spectrum and
required repetitive database matching. In contrast,
in MS/MS charge state determination using SIFTER,
repetitive database searches can be eliminated. Also
it will require only half the time for analysis com-
pared to approaches that assume double and triple
charge states for a multiply charged spectrum.

5. CONCLUSION

Analysis of shotgun proteomic data must be
developed and optimized together in a systems app-
roach to extract the maximum amount of infor-
mation from the entire analysis pipeline. In this
paper, two new computational methogs have been
introduced to use computational resources in an
efficient manner and get more peptide identifica—
tions, and their benefits have been made clear in
large-scale shotgun proteomics experiments. Assessing
spectral quality and determining a peptide’s charge
state are expected to play an important supporting
role in the analysis of shotgun proteomic data.
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