DOI QR코드

DOI QR Code

Characteristics of Large Area ITO/PET Fabricated by Vacuum Web Coater

진공 웹코터로 제작된 대면적 ITO/PET의 특성 연구

  • Kim, Ji-Hwan (Department of Materials Science and Engineering, Korea University) ;
  • Park, Dong-Hee (Materials Science and Technology Research Division, Korea Institute of Science and Technology) ;
  • Kim, Jong-Bin (Department of Materials Science and Engineering, Korea University) ;
  • Byun, Dong-Jin (Department of Materials Science and Engineering, Korea University) ;
  • Choi, Won-Kook (Materials Science and Technology Research Division, Korea Institute of Science and Technology)
  • 김지환 (고려대학교 재료공학과) ;
  • 박동희 (재료기술연구본부, 한국과학기술연구원) ;
  • 김종빈 (고려대학교 재료공학과) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 최원국 (재료기술연구본부, 한국과학기술연구원)
  • Published : 2007.10.27

Abstract

Indium tin oxide, which is used as transparent conducting layer in flexible device, is deposited on PET film by a magnetron sputtering in 300 mm wide roll-to-roll process (vacuum web coating). Sheet resistance, specific resistance and transmittance is differed by sputtering parameters such as working pressures, oxygen partial pressure, and thickness of ITO layer. ITO layer is deposited about 90 nm at roll speed of 0.24 m/min and its sputtering power is 3 kW. From the XRD spectrum deposited ITO layer is verified as amorphous. Under working pressure varied from $3{\times}10^{-4}\;Torr$ to $2{\times}10^{-3}\;Torr$, sheet resistance is lowest at the working pressure of $1{\times}10^{-3}\;Torr$ and its value is from $110\;{\Omega}/{\square}$ to $260\;{\Omega}/{\square}$ at the thickness of 90 nm. Oxygen partial pressure also varies sheet resistance and is optimized at the regime from 0.2% ($1.8{\times}10^{-6}\;Torr$) to 0.6% ($6{\times}10^{-6}\;Torr$). In this oxygen partial pressure sheet resistance is lower than $150\;{\Omega}/{\square}$. As ITO layer thickness increases, sheet resistance decreases down to $21\;{\Omega}/{\square}$ and specific resistance is about $7.5{\times}10.4{\Omega}cm$ in 340 nm thickness ITO layer. Transmittance is measured at the wavelength of 550 nm and is about 90% for 180 nm thickness ITO/PET.

Keywords

References

  1. R. Ludwig, R. Kukla, and E. Josephson, Proceedings of the IEEE, 93, 8, (2005) https://doi.org/10.1109/JPROC.2005.851489
  2. D. G. Arnold, Flexible Display and Electronics 2004, J. Olmstead, Intertech, Portland, (2004)
  3. A. Doda, Materials Today, 9, 24 (2006) https://doi.org/10.1016/S1369-7021(06)71444-4
  4. G. P. Crawford, Flexible Flat Panel Displays, G. P. Crawford, John Wily & Sons, New York, (2005)
  5. Y. Shigesato, S. Takaki, and T. Haranoh, J. Appl. Phys., 71, 3356 (1992)
  6. E. Kubota, Y. Shigesato, M. Igarashi, T. Haranoh, and K. Suzuki, Jpn. J. Appl. Phys., 33, 4997 (1994) https://doi.org/10.1143/JJAP.33.4997
  7. J. P. Zheng and H. S. Kwok, Appl. Phys. Lett., 63, 1 (1993) https://doi.org/10.1063/1.109736
  8. H. Izumi, F. Adurodija, T. Kaneyoshi, T. Ishihara, H. Yoshika, and M. Motoyama, J. Appl. Phys., 91, 1213 (2002) https://doi.org/10.1063/1.1427137
  9. H. Kim, J. S. Horwitz, G. P. Krushto, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett., 79, 284 (2001) https://doi.org/10.1063/1.1383568
  10. J. Ma, S. Li, J. Zhao, and H. Ma, Thin Solid Films, 307, 200 (1997) https://doi.org/10.1016/S0040-6090(97)00203-4
  11. H. H. Kim, M. J. Cho, W. J. Park, J. G. Lee and K. J. Lim, Trans. EEM., 3(2), 6, (2002) https://doi.org/10.4313/TEEM.2002.3.2.006
  12. M. J. Keum and K. H. Kim, J. Kor. Inst. Elect. Eelectron. Mater. Engin., 19(1), 87 (2006) https://doi.org/10.4313/JKEM.2006.19.1.087
  13. H. W. Choi, D. H. Park, J. H. Kim, W. K. CHoi, Y. J. Sohn, B. S. Song, J. Cho, and Y.S. Kim, J. Kor. Vac. Soc., 16(2), 79 (2007) https://doi.org/10.5757/JKVS.2007.16.2.079
  14. T. Minami, H. Sonohara, T. Kakumu, and S. Takata, Thin Solid Films., 270, 37 (1995) https://doi.org/10.1016/0040-6090(95)06889-9
  15. A. K. Kulkarni, T. Lim, M. Khan, and K.H. Schulz, J. Ac. Sci. Technol., A, 16, 1636 (1998) https://doi.org/10.1116/1.581133
  16. Y. Higuchi, J. Surf. Finish. Soc. Jap., 43, 74 (1992) https://doi.org/10.4139/sfj.43.74
  17. M. Boehme and C. Charton, Surface and Coatings Technology, 200, 932, (2005) https://doi.org/10.1016/j.surfcoat.2005.02.040
  18. H. Kenko and K. Miyake, J. Appl. Phys., 53(36), 29 (1982) https://doi.org/10.1063/1.329931
  19. W. C. Song, J. Kor. Inst. Elect. Eelectron. Mater. Engin., 17, 12 (2004) https://doi.org/10.4313/JKEM.2004.17.12.1277