DOI QR코드

DOI QR Code

Effects of Y2O3 and Al2O3 Addition on the Properties of Hot Pressed AlN Ceramics

AlN 세라믹의 hot pressing에 사용되는 Y2O3 및 Al2O3 소결조제의 효과

  • Kong, Man-Sik (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Hong, Hyun-Seon (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Lee, Sung-Kyu (Division of Chemical and Materials Engineering, Ajou Universty) ;
  • Seo, Min-Hye (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Jung, Hang-Chul (Plant Engineering Center, Institute for Advanced Engineering)
  • 공만식 (고등기술연구원 플랜트엔지니어링센터) ;
  • 홍현선 (고등기술연구원 플랜트엔지니어링센터) ;
  • 이성규 ;
  • 서민혜 (고등기술연구원 플랜트엔지니어링센터) ;
  • 정항철 (고등기술연구원 플랜트엔지니어링센터)
  • Published : 2007.10.27

Abstract

AlN plates were fabricated by hot pressing at $1700-1900^{\circ}C$ using yttria and alumina (3 and $10\;{\mu}m$ particle size) powders as additives and characterized: density, thermal conductivity, transverse rupture strength, and grain size measurement by SEM and EDS. Density values of $3.31-3.34\;g/cm^3$ are largely attributed to hot pressing of powder mixtures in carbon mold under $N_2$ atmosphere which caused effective degree of oxygen removal from yttrium-aluminate phase expected to form at $1100^{\circ}C$. The grain size of hot pressed AlN was almost homogeneous, with size approximately from 3.2 to $4.0\;{\mu}m$ after hot pressing. $Al_2O_3$ powder of $3\;{\mu}m$ particle size resulted in better transverse rupture strength and finer grain size compared to $10\;{\mu}m$ $Al_2O_3$ powder. The thermal conductivity of AlN ranged between $83-92.7\;W/m{\cdot}K$ and decreased with $Al_2O_3$ addition. Fine grain size is preferred for better mechanical properties and thermal conductivity.

Keywords

References

  1. C. Y. Hsieh, C. N. Lin, S. L. Chung, J. Cheng, D. K. Agrawal, J. Eur. Ceram, Soc., 27, 343 (2007) https://doi.org/10.1016/j.jeurceramsoc.2006.03.003
  2. X. Xu, H. Zhuang, W. Li, S. Xu, B. Zhang, X. Fu, Mat. Sci. Eng., A342, 104 (2003) https://doi.org/10.1016/S0921-5093(02)00254-X
  3. K. A. Khor, K. H. Cheng, L. G. Yu, F. Boey, Mat. Sci. Eng., A347, 300 (2003) https://doi.org/10.1016/S0921-5093(02)00601-9
  4. G. A. Slack, L. J. Schowalter, D. Morelli, J. A. Freitas Jr., J. Cryst. Growth, 246, 287 (2002) https://doi.org/10.1016/S0022-0248(02)01753-0
  5. L. Qiao, H. Zhou, H. Xue, S. Wang, J. Eur. Ceram. Soc., 23, 61 (2003) https://doi.org/10.1016/S0955-2219(02)00079-1
  6. S. Du, Z. Liu, L. Li, Z. Gui, Mater. Lett., 25 (1995) 105 https://doi.org/10.1016/0167-577X(95)00166-2
  7. S. Kume, M. Yasuoka, S.-K. Lee, A. Kan, H. Ogawa, K. Watari, J. Eur. Ceram. Soc., 27 (2007) 2967 https://doi.org/10.1016/j.jeurceramsoc.2006.11.023
  8. F. Boey, A. I. Y. Tok, Y. C. Lam, S. Y. Chew, Mat. Sci. Eng., A335, 281 (2002) https://doi.org/10.1016/S0921-5093(01)01936-0
  9. A. Klimera, F. Raether, J. Ruska, J. Eur. Ceram. Soc., 27, 1419 (2007) https://doi.org/10.1016/j.jeurceramsoc.2006.04.098
  10. Y. W. Kim, H. C. Park, Y. B. Lee, K. D. Oh, R. Stevens, J. Eur. Ceram. Soc., 21 (2001) 2383 https://doi.org/10.1016/S0955-2219(01)00200-X
  11. F. Boey, L. Cao, K. A. Khor, Acta mater., 49 (2001) 3117 https://doi.org/10.1016/S1359-6454(00)00391-8
  12. J. S. Reed, Principles of Ceramic Processing, Second ed., p. 513, John Wiley & Sons, Inc., New York, USA, (1995)
  13. H. Nakano, K. Watari, K. Urabe, J. Eur. Ceram. Soc., 23, 1761 (2003) https://doi.org/10.1016/S0955-2219(02)00408-9
  14. L. Qiao, H. Zhou, K. Chen, R. Fu, J. Eur. Ceram. Soc., 23, 1517 (2003) https://doi.org/10.1016/S0955-2219(02)00344-8