Antioxidant Activity and Isoflavone Profile of Rhynchosia nolubilis Seeds Pickled in Vinegar (Chokong)

  • Kim, Seok-Joong (Department of Food and Nutrition, Dongduk Women's University) ;
  • Shin, Jee-Young (Material Processing Technology Division, Korea Food Research Institute) ;
  • Cho, Moo-Ho (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Oh, Young-Sook (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Park, Na-Young (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Shin-Ho (Department of Food Science and Technology, Catholic University of Daegu)
  • Published : 2007.06.30

Abstract

The antioxidant activity and isoflavone content of chokong, Rhynchosia nolubilis seeds pickled in vinegar at $4^{\circ}C$ for 2 weeks, were investigated. The polyphenol content and 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical-scavenging capacity were lower in chokong than in raw seeds. Based on isoflavone analysis, the aglycone (daidzein and genistein) content was high in chokong while the content of the corresponding glucosides (daidzin and genistin) was similar to that in raw seeds. Thermal processing, in which seeds were heated in vinegar at $121^{\circ}C$ for 20 min, reduced the polyphenol content but did not affect the DPPH radical-scavenging capacity compared to the pickling process. The heated seeds had a 2.6 to 2.7 times higher glucoside content and 51 to 55% lower aglycone content than chokong, depending on the kind of vinegar used. During pickling and thermal processing, vinegars were more effective at eluting antioxidants and isoflavones from seeds than other solutions such as acetic acid, citric acid and HCl solutions, distilled water, and phosphate buffer (pH 7.0).

Keywords

References

  1. Anderson JJB, Anthony MS, Cline JM, Washburn SA, Garner SC. Health potential of soy isoflavones for menopausal women. Public Health Nutr. 2: 489-504 (1999)
  2. Messina MJ. Legume and soybeans: overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 70: 439S-449S (1999) https://doi.org/10.1093/ajcn/70.4.439
  3. Takahashi R, Ohmori R, Kiyose C, Momiyama Y, Ohsuzu F, Kondo K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agr. Food Chem. 53: 4578-4582 (2005) https://doi.org/10.1021/jf048062m
  4. Sa JH, Shin IC, Jeong KJ, Shim TH, Oh HS, Kim YJ, Cheung EH, Kim GG, Choi DS. Antioxidative activity and chemical characteristics from different organs of small black soybean (yakkong) grown in the area of Jungsun. Korean J. Food Sci. Technol. 35: 309-315 (2003)
  5. Bae EA, Moon GS. A study on the antioxidative activities of Korean soybeans. J. Korean Soc. Food. Sci. Nutr. 26: 203-208 (1997)
  6. Kim MJ, Kim KS. Functional and chemical composition of hwanggumkong, yakong, and huktae. Korean J. Food Cookery Sci. 21: 844-850 (2005)
  7. Kang SA, Jang KH, Cho Y, Hong K, Suh JH, Choue R. Effects of artificial stomach fluid and digestive enzymes on the aglycone isoflavone contents of soybean and black bean (Rhynchosia nolubilis: yakkong). Korean J. Nutr. 36: 32-39 (2003)
  8. Lee J, Koo J, Min DB. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. F. 3: 21-33 (2004) https://doi.org/10.1111/j.1541-4337.2004.tb00058.x
  9. Middleton E, Kandaswamy C, Theoharides TC. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52: 673-751 (2000)
  10. Kehrer JP, Smith CV. Free radicals in biology: Sources, reactivities, and roles in the etiology of human diseases. pp. 25-62. In: Natural Antioxidants in Human Health and Disease. Frei B (ed). Academic Press, London, UK (1994)
  11. Rice-Evans CA, Miller NM, Paganda G, Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  12. Cardador-Martinez A, Loarca-Pina GL, Oomah BD. Antioxidant activity in common beans (Phaseolus vulgaris L.). J. Agr. Food. Chem. 50: 6975-6980 (2002) https://doi.org/10.1021/jf020296n
  13. Shahidi F, Chavan UD, Naczk M, Amarowicz R. Nutrient distribution and phenolic antioxidants in air-classified fractions of Beach pea (Lathyrus maritimus L.). J. Agr. Food Chem. 49: 926-933 (2001) https://doi.org/10.1021/jf0005317
  14. Mazur WM, Duke JA, Wahala K, Rasku S, Adlercreutz H. Isoflavonoids and lignans in legumes: nutritional and health aspects in humans, J. Nutr. Biochem. 9: 193-200 (1998) https://doi.org/10.1016/S0955-2863(97)00184-8
  15. Oh JK, Kim SJ, Imm JY. Antioxidative effect of crude anthocyanins in water-in-oil microemulsion system. Food Sci. Biotechnol. 15: 283-288 (2006)
  16. Benassayag C, Perrot-Applanat M, Ferre F. Phytoestrogens as modulators of steroid action in target cells. J. Chromatogr. B 777: 233-248 (2002) https://doi.org/10.1016/S1570-0232(02)00340-9
  17. Setchell KDR. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 68: 1333S-1346S (1998)
  18. Anderson JJB, Garner SC. The effects of phytoestrogens on bone. Nutr. Res. 17: 1617-1632 (1997) https://doi.org/10.1016/S0271-5317(97)00156-5
  19. Kurzer MS, Xu X. Dietary phytoestrogens. Ann. Rev. Nutr. 17: 353-381 (1997) https://doi.org/10.1146/annurev.nutr.17.1.353
  20. Lee CH, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen ZU. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 90: 735-741 (2005) https://doi.org/10.1016/j.foodchem.2004.04.034
  21. Manzoni MSJ, Rossi EA, Carlos IZ, Vendramini RC, Duarte ACGO, Damaso AR. Fermented soy product supplemented with isoflavones affected fat depots in juvenile rats. Nutrition 21: 1018-1024 (2005) https://doi.org/10.1016/j.nut.2005.02.007
  22. Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 76: 1191-1201 (2002) https://doi.org/10.1093/ajcn/76.6.1191
  23. Kim JS, Kim JG, Kim WJ. Changes of isoflavone contents in soybean cultivars pickled in persimmon vinegar. Korean J. Food Sci. Technol. 36: 833-836 (2004)
  24. Yeo KE, Choi HS, Kim DW, Kim JS, Kim WJ. Effect of acidification on physical and organoleptic properties of soybeans. Korean J. Food Nutr. 16: 410-416 (2003)
  25. Kim SJ, Youn KS, Park HS, Antioxidative effect of pine, oak, and lily pollen extracts. Korean J. Food Sci. Technol. 37: 833-837 (2005)
  26. Coward L, Smith M, Kirk M, Barnes S. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 68: 1486S-1491S (1998)
  27. Lee KH, Ryu SH, Lee YS, Kim YM, Moon GS. Changes of antioxidative activity and related compounds on the cheonggukjang preparation by adding drained boiling water. Korean J. Food Cookery Sci. 21: 163-170 (2005)
  28. Bressani R, de Mora DR, Flores R, Gomez-Brenes R. Evaluation of two methods to determine the polyphenol content in raw and cooked beans and its effect on protein digestibility. Arch. Latinoam. Nutr. 41: 569-583 (1991)
  29. Kudou S, Fleury Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agr. Biol. Chem. Tokyo 55: 2227-2233 (1991) https://doi.org/10.1271/bbb1961.55.2227
  30. Wang H, Murphy PA. Isoflavone content in commercial soybean foods. J. Agr. Food Chem. 42: 1666-1673 (1994) https://doi.org/10.1021/jf00044a016
  31. Shimoni E. Stability and shelf life of bioactive compounds during food processing and storage: soy isoflavones. J. Food Sci. 69: R160-R166 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb11005.x
  32. Yang SO, Chang PS, Lee JH. Isoflavone distribution and $\beta$-glucosidase activity in cheonggukjang, a traditional Korean whole soybean-fermented food. Food Sci. Biotechnol. 15: 96-101 (2006)
  33. Jang CH, Lim JK, Kim JH, Park CS, Kwon DY, Kim YS, Shin DH, Kim JS. Change of isoflavone content during manufacturing of cheonggukjang, a traditional Korean fermented soyfood. Food Sci. Biotechnol. 15: 643-646 (2006)
  34. Pinto MS, Lajolo FM, Genovese MI. Effect of storage temperature and water activity on the content and profile of isoflavones, antioxidant activity and in vitro protein digestibility of soy protein isolates and defatted soy flours. J. Agr. Food Chem. 53: 6340-6346 (2005) https://doi.org/10.1021/jf0502451
  35. Shon MY, Seo Kl, Park SK, Cho YS, Sung NJ. Some biological activities and isoflavone content of cheonggukjang prepared with black beans and Bacillus strains. J. Korean Soc. Food Sci. Nutr. 30: 662-667 (2001)
  36. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699 (2000)
  37. Zubik L, Meydani M. Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. Am. J. Clin. Nutr. 77: 1459-1465 (2003) https://doi.org/10.1093/ajcn/77.6.1459
  38. Setchell KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT, Kirschner AS, Cassidy A, Heubi JE. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J. Nutr. 131: 1362S-1375S (2001)
  39. Matsuura M, Obata A. $\beta$-Glucosidases from soybeans hydrolyze daidzin and genistin. J. Food Sci. 58: 144-147 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb03231.x
  40. Matsuura M, Sasaki J, Murao S. Studies on $\beta$-glucosidases from soybeans that hydrolyze daidzin and genistin: isolation and characterization of an isozyme. Biosci. Biotech. Bioch. 59: 1623-1627 (1995) https://doi.org/10.1271/bbb.59.1623
  41. Xie L, Hettiarachchy NS, Cai R, Tsuruhami K, Koikeda S. Conversion of isoflavone glycosides to aglycones in soylife and soymeal using $\beta$-glycosidase. J. Food Sci. 68: 427-430 (2003) https://doi.org/10.1111/j.1365-2621.2003.tb05689.x
  42. Yeo KE, Kim WJ. Effects of acid hydrolysis on isoflavone of defatted soybean flour. Korean J. Food Sci. Technol. 34: 916-918 (2002)
  43. Delmonte P, Perry J, Rader JI. Determination of isoflavones in dietary supplements containing soy, red clover and kudzu: extraction followed by basic or acidic hydrolysis. J. Chromatogr. A 1107: 59-69 (2006) https://doi.org/10.1016/j.chroma.2005.11.060
  44. Jackson CJC, Dini JP, Lavandier C, Rupasinghe HPV, Faulkner H, Poysa V, Buzzell D, DeGrandis S. Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process Biochem. 37: 1117-1123 (2002) https://doi.org/10.1016/S0032-9592(01)00323-5
  45. Rickert DA, Meyer MA, Murphy PA. Effect of extraction pH and temperature on isoflavone and saponin partitioning and profile during soy protein isolate production. J. Food Sci. 69: 623-631 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb09910.x
  46. Grun IU, Adhikari K, Li C, Li Y, Lin B, Zhang J, Fernando LN. Changes in the profile of genistein, daidzein, and their conjugates during thermal processing of tofu. J. Agr. Food Chem. 49: 2839-2843 (2001) https://doi.org/10.1021/jf010028+
  47. Murphy PA, Barua K, Hauck CC. Solvent extraction selection in the determination of isoflavones in soy foods. J. Chromatogr. B 777: 129-138 (2002) https://doi.org/10.1016/S1570-0232(02)00342-2
  48. Mahungu SM, Diaz-mercado S, Li J, Schwenk M, Singletary K, Faller J. Stability of isoflavones during extrusion processing of corn/soy mixture. J. Agr. Food Chem. 47: 279-284 (1999) https://doi.org/10.1021/jf980441q
  49. Barbosa ACL, Lajolo FM, Genovese MI. Influence of temperature, pH, and ionic strength on the production of isoflavone-rich soy protein isolates. Food Chem. 98: 757-766 (2006) https://doi.org/10.1016/j.foodchem.2005.07.014