Antibiotic Resistance of Enterococcus Isolated from the Processed Grain Foods, Saengsik and Sunsik

  • Kim, Soo-Hwan (Department of Food Science and Biotechnology, Kyungwon University) ;
  • Kim, Jong-Shin (Department of Food Science and Biotechnology, Kyungwon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Kyungwon University)
  • Published : 2007.06.30

Abstract

To evaluate the vancomycin resistance of Enterococcus spp. (VRE) from Saengsik and Sunsik, Enterococcus were isolated and identified from 25 Saengsik and 35 Sunsik samples, and resistance of Enterococcus to other antibiotics was also assessed. Thirty nine Enterococcus, 16 strains from Saengsik, and 23 strains from Sunsik, were ultimately isolated. The most frequently collected Enterococcus isolates in Saengsik were E. casseliflavus and E. hirae, and were E. casseliflavus and E. faecium in Sunsik. However, E. faecalis was not detected in those foods. Minimum inhibitory concentrations of vancomycin against the isolates were below $4\;{\mu}g/mL$ and no strains evidenced profound levels of resistance. The isolates were found to be susceptible to vancomycin with the exception of eight E. casseliflavus and three E. gallinarum. All Enterococcus isolates proved resistant to streptomycin and chloramphenicol. 23% of the isolates were resistant to penicillin; however, all of the isolates were sensitive to tetracycline. Six and 48%, respectively, of the strains from the Saengsik and Sunsik proved resistant to erythromycin. All of E. mundtii and E. hirae isolates from Saengsik, and 20% of E. gallinarum and E. casseliflavus isolates from Sunsik were found to be ampicillin-resistant. All of E. gallinarum, E. casseliflavus, and E. faecium were rifampin-resistant. The antibiotic resistances of Enterococcus were relatively low, and this low vancomycin resistance was similar to that evidenced by Enterococcus isolates obtained from the other foods. However, there may be a need for some review of the accepted antibiotics criteria for Enterococcus and VRE in ready-to-eat foods.

Keywords

References

  1. Schleifer KH, Kilpper-Balz R. Molecular and chemotaxonomic approach to the classification of streptococci, enterococci and lactococci. Review. Syst. Appl. Microbiol. 10: 1-18 (1987) https://doi.org/10.1016/S0723-2020(87)80002-4
  2. Murray BE. The life and times of the Enterococcus. Clin. Microbiol. Rev. 3: 46-65 (1990) https://doi.org/10.1128/CMR.3.1.46
  3. Collins MD, Jones D, Farrow JAE, Kilpper-Balz R, Schleifer KH. Enterococcus avium nom. rev., comb. nov.; E. casseliflavus nom. rev., comb. nov.; E. durans nom. rev., comb. nov.; E. gallinarum com b. nov.; E. malodoratus sp. nov. Int. J. Syst. Bacteriol. 34: 220-223 (1984) https://doi.org/10.1099/00207713-34-2-220
  4. Fallow JAE, Collins MD. Enterococcus hirae, a new species that includes amnio acid assay strain NCDO 1258 and strains causing growth depression in young chickens. Int. J. Syst. Bacteriol. 35: 73-75 (1985) https://doi.org/10.1099/00207713-35-1-73
  5. Fackalm RR, Collins MD. Identification of Enterococcus species isolated from human infections by a conventional test scheme. J. Clin. Microbiol. 27: 731-734 (1989)
  6. Moellering RC. Enterococcus species, Streptococcus bovis, and Leuconostoc. pp. 1826-1835. In: A Principles and Practice of Infectious Disease. 4th ed. Mandel GL, Bennett JE, Dolin R, Mandell D (eds). Churchill Living Stone, New York, NY, USA (1995)
  7. Moellering RC. Vancomycin-resistant enterococci. Clin. Infect. Dis. 26: 1196-1199 (1998) https://doi.org/10.1086/520283
  8. Johnson AP, Uttley AHC, Woodford N, Geroge RC. Resistance to vancomycin and teicoplanin: An emerging clinical proble. Clin. Microbiol. Rev. 3: 280-291 (1990) https://doi.org/10.1128/CMR.3.3.280
  9. Noble WC, Virani Z, Cree RGA. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 93: 195-198 (1992) https://doi.org/10.1111/j.1574-6968.1992.tb05089.x
  10. Devriese LA, Pot B, Collins MD. Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species group. J. Appl. Bacteriol. 75: 399408 (1993)
  11. Mundt OJ. Enterococci. Vol. 2, pp.1063-1065. In: Bergey's Manual of Systematic Bacteriology. Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds). Williams and Wilkins, Baltimore, MD, USA (1986)
  12. OJEC. EEC council directive of 16 June 1992 on milk hygiene (92/ 46EEC). Official Journal of the European Community L268/1, 14.9.1992 (1992)
  13. Chung YH, Kim SY, Chang YH. Prevalence of antibiotic resistant foodborne bacteria isolated in Korea. Food Sci. Biotechnol. 14: 216-222 (2005)
  14. Moon BY, Lee EJ, Park JH, Characteristic of antibiotic resistance of foodborne pathogens adapted to garlic, Allium sativum L. Food Sci. Biotechnol. 15: 511-515 (2006)
  15. Facklam RR, Sahm DF, Teixerira LM. Enterococcus. pp. 297-305. In: Mannual of Clinical Microbiology. 7th ed. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds). American Society of Microbiology, Washington, DC, USA (1999)
  16. Sahm DF, Free L, Smith C, Eveland M, Mundy LM. Rapid characterization schemes for surveillance isolates of vancomycinresistant enterococci. J. Clin. Microbiol. 35: 2026-2030 (1997)
  17. Danbing KE, Picard FJ, Martineau F, Menard C, Roy PH, Ouellette M, Bergeron MG. Development of a PCR assay for rapid detection of enterococci. J. Clin. Microbiol. 37: 3497-3503 (1999)
  18. Zarazaga M, Saenz Y, Portillo A, Tenorio C, Ruiz-Larrea F, Campo RD, Baquero F, Torres C. In vitro activities of ketolide HMR 3647, mactolides, and other antibiotics against Lactobacillus, Leuconostoc, and Pediococcus isolates. Antimicrob. Agents Ch. 43: 3039-3041 (1999)
  19. NCCLS. Performance standards for antimicrobial disk susceptibility tests; approved standard M2-A7. 7th ed. NCCLS document M2-A7. National Committee for Clinical Labotatory Standards, Wayne, PA, USA (2000)
  20. Klein G, Pack A, Reuter G. Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl. Environ. Microb. 64: 1825-1830 (1998)
  21. Kundtson LM, Hartman PA. Enterococci in pork processing. J. Food Protect. 56: 6-9 (1993) https://doi.org/10.4315/0362-028X-56.1.6
  22. Devriese LA, Pot B, Van Damrne L, Kersters K, Haesebrouck F. Identification of Enterococcus species isolated from foods of animal origin. Int. Food Microbiol. 26: 187-197 (1995) https://doi.org/10.1016/0168-1605(94)00119-Q
  23. Stobbering E, van den Bogaard A, London N, Driessen C, Top J, Willens R. Enterococci with glycopeptide resistant in turkeys, turkey farmers, turkey slaughterers, and (sub)urban residents in the south of The Netherlands: Evidence for transmission of vancomycin resistance from animals to humans? Antimicrob. Agents Ch. 43: 2215-2221 (1999)
  24. Cho YS, Lee HS, Kim JM, Ryu PO, Park YH, Yoo HS, Lee MH. Comparison of antimicrobial susceptibility of vancomycin resistant enterococci from animals and human. Korean J. Vet. Public Health 27: 17-29 (2003)
  25. Randazzo CL, Restuccia C, Romano AD, Caggia C. Lactobacillus casei, dominant species in naturally fermented Sicilian green olives. Int. J. Food Microbiol. 90: 9-14 (2004) https://doi.org/10.1016/S0168-1605(03)00159-4
  26. Center for Disease and Control. Nosocomial enterococci resistant to vancomycin - United States, 1989-1993. MMWR 42: 597-599 (1993)
  27. Chadwick PR, Woodford N, Kaczmarski EB, Gray S, Barrell RA, Oppenheim BA. Glycopeptide-resistant enterococci isolated from uncooked meat. J. Antimicrob. Chemoth. 38: 908-909 (1996) https://doi.org/10.1093/jac/38.5.908
  28. Bates J, Jordens JZ, Griffiths DT. Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. J. Antimicrob. Chemoth. 34: 507-516 (1994) https://doi.org/10.1093/jac/34.4.507
  29. Seo KS, Song DJ, Gwyther MM, Park YH. Development of multiplex PCR for detection of vancomycin resistant enterococci (VRE) and epidemiological application in Korea. Korean J. Vet. Res. 39: 343-352 (1999)
  30. Kim JK, Lee YW. A review study of food poisining in Korea. J. Food Hyg. Saf. 4: 199-255 (1989)
  31. Ahn YS, Shin DH. Antimicrobial effects of organic acids and ethanol on several foodbome microorganism. Korean J. Food Sci. Technol. 31: 1315-1323 (1999)
  32. Quintiliani R Jr, Sham DF, Courvalin P. Mechanism of resistance to antimicrobial agents. pp. 1505-1525. In: Mannual of Clinical Microbiology. 7th ed. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds). American Society of Microbiology, Washington, DC, USA (1999)
  33. Zorzi W, Zhou XY, Dardenne O, Lamotte J, Raze D, Pierre J, Gutmann L, Coyette J. Structure of the low-affinity penicillin-binding protein 5, PBP5fm, in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J. Bacteriol. 178: 4948-4957 (1996) https://doi.org/10.1128/jb.178.16.4948-4957.1996
  34. Klare I, Heier H, Claus H, Reissbrodt R, Witte W. vanA-Mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol. Lett. 125: 165-172 (1995) https://doi.org/10.1111/j.1574-6968.1995.tb07353.x
  35. Pavia M, Nobile CGA, Salpietro L, Angellillo IF. Vancomycin resustance and antibiotic susceptibility of enterococci in raw meat. J. Food Protect. 7: 912-915 (2000)