OIL2XIE 7I8taZ ot HAZEol THALE

ohd2AE Ao & AMNEL A4

Wy & ool

! o
As AT AARRE T ARl os] ghiol ZRE AEstA olsatAU HA] ojggE HoA B A AT 4—2 &‘%E}. oz g
FARE A4 JeiA 2an Auchs B4 9 A4 JuE A Zo] shsaor BTk ojo] ¥ =R2e AA 29 2 g A
Ag87] 99 B analogical N 71ES ARk 2els AA 2L PRl AL ANE FRAERA AL S Q% ERae
e Mokttt & AALE ol gd AFE 44} AXVEE A8 analogical 1A et MRS AAT ol HelHeE 7x

2 GAg FEUEY golredd B P e vlestAnh

|9 AN =Y, HE, AL, Analogical &, ZHEHE =to|=2a2|

Analogy-based Reuse of Object Model
Je-Min Bae'

ABSTRACT

Code reuse in software reuse has several limitations such as difficulties of understanding and retrieval of the reuse code written by
other developers. To overcome these problems, it should be possible to reuse the analysis/design information than source code itself.
Therefore, this paper present analogical matching techniques for the reuse of object models and patterns. And this paper have suggested
the object model and the design patterns as reusable components and the representation techniques to store them. Namely, the contents of
the paper are as follows. Analogical matching functions to retrieve analogous components from reusable libraries. And the representation of

665

reusable components to be stored in the library in order to support the analogical matching.

Key Words : Object Model:

1. INTRODUCTION

The reuse of software can contribute to improve the
productivity by reusing previous development experiences
to the development processes of new software [15]. Up to
this point, efforts for the reuse of software have been
focused on reuse at the code level, being either reuse of
the algorithm library or the reuse of the class library [10].
In order to overcome the limitations which comes with
reuse of code [2, 3], continued effort is being exerted for
the reuse of the data material created within the analysis
/design phase previous to the coding phase.

Recently, attempts for software development with object
-oriented methodologies applied have increased in accordance
to activation of object-oriented methodologies [2, 10]. For
developers with no object modeling or component modeling

tpAsel A AHHTER B
=203 59 149, AabekE 12007 79 5Y

Pattern: Reuse: Analogical Matching: Component Library

experience, it is not an easy task to discriminate the
appropriate objects and grant the specific attributes or
behaviors for the problem at hand [11]. If the models in a
similar domain can be referenced, the developer easily can
understand the problem. With this understanding, the
developer can make new model. Consequently, rather than
the reuse of code dependent of the environment and
language, the reuse of abstract models are required.

In order to support the reuse of object models within
the requirement specification level, this paper proposes a
reusable environment for object models through analogical
matching by introducing the analogy techniquel4, 7, 12, 16]
being researched in knowledge engineering. The analogy
technique is different from the similarity measurement
technique being used for the reuse of existing codes.

Although similarity refers to a characteristic or intrinsic
commonness which exists between two objects, analogy
refers to the consistent structure or confronting nature
between two objects which exists from all point of views

666 HEMISS=2XID HM14-DH H6=(2007.10)

(15, 17, 18]

In order to support the reuse of object models, this
paper proposes an environment which reuses object models
and patterns based on analogies by introducing the analogical
matching technique. Section 2 will describe the techniques
necessary for reuse and section 3 will define the library
structure and representation technique for model reuse
and also define the textual matching technique for patterns
as well as the semantic matching techniques based on
analogical matching techniques. Section 4 will describe and
evaluate the implementation of matching agents which
searches for suitable models from the constructed reusable
library in a given situation. Section 5 will provide a
conclusion.

2. Existing Research for Model Reuse

Currently, research for model reuse can largely be
classified into reuse of specifications, reuse of functionality

centered products (ex. DFD), and the reuse of object
models[15, 16].

The majority of the research uses the SME (Structure
Matching Engine) and the ACME (Analogical Constraint
Matching Engine) based on a Tree format internal re-
presentation technique founded on the structural relatedness
of products. For this, the input material for SME and ACME
are applied by expressing the knowledge representation
structure of models in a mathematical language. Also,
analysis and a tool have been developed in order to support
the process of reusing the matching results created in
SME and ACME as object models.

Rather than knowledge representation which is the format
which satisfies the input conditions of SME and ACME,
this research supports the reuse of object model by
taking the object model itself as the input material. For
the reuse of software artifact as proposed by Maiden, a
representation technique which expresses patterns, object
behaviors, and pattern behaviors based on the required
issues of consideration and not only the unit objects is
proposed, and the technique which evaluates the similarity
between patterns and behaviors is also proposed. Different
from Whitehurst, a similarity evaluation technique which
takes the various object associations and object behaviors
into consideration is being proposed.

3. EXAMPLE OF ANALOGY BASED REUSE OF
OBJECT MODEL

We have two problem statements for object modeling.
Two problems are quite different: different objects and

different relationship as well as different goals of system.
But we can find there are somewhat similar between
them even we can say exactly what they are.

3.1 Library Application

Remote lending department of a university library often
receives orders for copies of scientific papers. The research
staff is the most frequent user of the service, but occasionally
the department receives requests for copies from students
and technical staff as well. On receiving an order, the
department gets a reference to an article and in addition
the name of the requester and his/ her account number.
The order also tells whether a photocopy, microfiches or
microfilm of the article is wanted. The librarian looks up
the borrower in a register. This register is computerized,
and the librarian has access to it through a networked
personal computer. In the register, the librarian finds the
address of the borrower The reference gives information
on which book or journal he article appeared in. The
librarian looks up the information in a punching card archive
containing all the books and journals in the library.
Thereafter, a copy mail system of the university. Finally,
the lending register is updated with the information that
the borrower has received a copy of the article.

If the book or journal containing the article is not available,
there are two options:

The book/journal exists in the library, but is lent out
past the allowed time. In this case, the librarian sends an
overdue notice.

The book/journal dose not exists in the library. In this
case the librarian forwards the order to other university
libraries, both domestic and foreign.

If the borrower is not registered in the borrower database
on the PC, the librarian verifies the identity by making a
phone call to the borrower’s department. Then the borrower
is contacted by phone and immediately registered in the
database as a new ‘customer. The request is then processed
as usual.

3.2 Wholesale Application

A wholesale dealer, selling marine outboard motors
daily receives several orders for spare parts, most orders
come from retailers, but occasionally there is private customer
needing spare parts. Together with the order, the dealer
receives both the name and the account number of the
customer. The account number is later verified against
his or her name. In addition the order tells which part
are requested in the order and how the order should be
dispatched. the stored assistant looks up the customer in
a register. This register is computerized, and the assistant

accesses the register using a networked PC.

In the register, the assistant gets the address of the
customer. For private customers, the assistant checks if
he can find any nearby retailers. Customers living within
a reasonable distance from a retailer are referred to
nearest retailer. Afterwards, the assistant looks up the
part in a punching card archive containing all the parts in
the warehouse. If the right part is found, the punch card
for the part is put in a separate archive for parts sold.
The ordered part is then delivered as previously decided.
Finally, the customer register is updated with information
concerning the dispatched order.

If the right part is not found in the warehouse, there
are two possibilities:

The assistant checks with the store manager if there
is a suitable substitute for the part in the warehouse.
The wholesale dealer has a policy to give a discount on
expensive substitute parts when requested parts are sold
out or cannot be found.

The requested part is ordered from the factory.

If the customer cannot be found in the register, the
assistant gives him/her a phone call to confirm the order.
Then the customer is given an account number, and the
order is dispatched in the usual way. Retailers are asked
to pay their debts quarterly, while private customers are
invoiced immediately.

We can easily think two problems have very similar
structure and properties even if different words and
different statements are used to describe the problems.
Both problems have their own resources and policy to
handle it and people who need what they have.

4. ANALOGICAL MATCHING TECHNIQUE

The structure and representation technique to store
objects and patterns as components in the library as well
as the technique based on analogical matching which
allows the searches of library have been defined.

4.1 Conceptual Model of Component

Regarding object models subject for reuse, the scale and
abstraction for the object model have each been classified
into two levels. Regarding the scales of the reuse unit,
the subjects were classified by the smallest objects and
larger size reuse pattern. In addition, the schema level
and case level were differentiated in accordance to the
abstraction level for the component subject to representation.
Schema is defined as the abstract representation of a model,
and is also referred to as abstract model, abstract representation,

OIZZXIE 7I18teZ &t HAZEo MAIS 667

or template. A case can be defined as an actual example
regarding a certain concept.

4.2 Library Representation for Models

Evaluating the analogy of the subjects for reuse is the
same as saying that the static and dynamic characteristics
of the two subjects are being evaluated. By reconfiguring
the OMG standardized reference model [16] for object
models, the technical format for each subject of reuse can
be defined. Regarding the simple structure for a model,
the static structure of the model is defined through the
signature, from which the dynamic characteristics can be
defined through specification. For patterns, the pattern
signature and pattern specification is defined for the association
of the objects.

4.2.1 Object Signature

In order to conduct analogical matching by saving the
object, the minimum unit comprising an object model, into
the reuse library, the object is expressed with the following
characteristics as shown in (Fig 1).

As the ObjectID is the identifier of objects registered
in the reuse library, it is a number created as an identifier
within the library while the ObjectName is the name of
the object given within the object model. The Set-of-
Attributes is the collection of static attributes given to
objects, and is the recording of only the names of such
attributes. The Set-of-Operations is the collection of interfaces
which displays the services of objects. The ObjectKind is
the definition of the type of objects. Among the object
types already defined this is the representation of what
class the cbjects belong to. They represent either the infor-
mation regarding the domain within the design library or
is represented as the Is-a-lattice within the section recording
general information, and can be continuously added.

422 Object Specification

As a representation of the state or behavior concepts
possessed by an object, the Object Specification area is
defined by adding the syntactical characteristics or the
meanings of each interfaces of the object. This is a section
which falls under dynamic modeling of objects.

Object = (ObjectID, ObjectName, set-of-Attribute, Setof-Operation, ObjectType)
ObjectType = resource | process | history | logic | role | interaction
Attribute = (ObjeciID, AtiributeName, AttributeType, AttributeStructure)
AttributeType = identifier | descriptive | referential

AttributeStructure = simple | composite

Operation = (ObjectID, OperationName, ResultType, Set-of-Argument)
Argument = (OperationName, ArgumentName, ArgumentType, ArgumentStructure)

ArgumentStructure = simple | composite | object

(Fig. 1) Representation of Object Signature

668 HEXZISE=EX D M14-DT H6=(2007.10)

(1) Representation of State Domain

Among object behaviors, the state which represents one
level can be represented through a combination of attributes
defined syntactically. They are defined as (Fig. 2).

State = (set-of-StateDomains, set-of-nvariants,
set-of-StateConstraints)
StateDomain = AbstractState | Predicate
AbstractState = abstract concept of state
Predicate = concrete predicate of state
Invariant = always predicate
StateConstraint = (AttributeName, Relation, SourceAttribute)

(Fig. 2) Representation of State Domain

The state domain is an important element which defines
the meaning which the objects possess within an application.
Even objects which possess the same name and operation
may possess differing state domains in accordance to the
requirements of the application.

The state expressed in the dynamic domain is generally
expressed as an abstract concept defined through an
association of various attribute values, referred to as the
AbstractState. In addition, they many be defined as a
definitive predicate in order to deliver a more precise
meaning.- Invariants, necessary to define the intrinsic
characteristic of models and carrying the characteristic
that they must be satisfied with any behavior the object
may operate, are expressed with the condition that they
must be satisfied together with the reserved word, always.

Constraints, similar to Invariants, define the relative
associativeness between one attribute and another attribute.
They are expressed by defining relationally what characteristic
a certain attribute possesses in comparison to another attribute.

(2) Representation of Behavior

Object behaviors, along with object states, provide important
dynamic meanings for objects, and can be viewed as the
transition of a certain object from one state to another
state through an event. This is defined as (Fig. 3).

Behavior = (EventName, Pre-State, Post-State, set-of-UpdateAttributes,
set-of-BehaviorConstraints)

Pre-State = StateDomain

Post-State = StateDomain

UpdateAttribute = AttributeName

BehaviorConstraint = (EventName, Relation, EventName)

(Fig. 3) Representation of Behavior

The message which corresponds to the state and defined
conditions converts it’s own state by operating the behavior
set to be conducted by the object. Behaviors are defined

through Post State which becomes defined after operating
the preceding condition Pre-State and behaviors which
first need to be satisfied in order to operate the behavior
and EventName of an event. The names of attributes which
change in value during a behavior from the attributes
defined to itself are referred to as UpdateAttributes. The
Constraint is the representation of the correlational relationship
between behaviors and records the occurring sequence
between events.

4.3. Analogical Matching Function

In this passage, the logic necessary to examine the
analogy between subjects will be recorded. Evaluating the
analogy between two subjects is saying the static char-
acteristics and the similarity of the dynamic characteristics
of the two subjects will be evaluated. For this, the matching
for objects and the matching for patterns have each been
defined.

Regarding the static characteristics of objects, the interface
matching function which evaluates the consistency level
between interfaces have been defined, and the specification
matching function has been defined in order to evaluate
the dynamic characteristics of objects. In the case of patterns
which defines the mutual application between objects, the
pattern structural matching function, which evaluates the
associative consistency level for objects comprising a pattern
and the pattem specification matching function, which evaluates
the behavioral consistency level in accordance to the
correlational relationship between elements comprising a
pattern, have been defined.

First, the general analogical matching is defined as
(Definition 1).

(Definition 1) Analogical Matching function between
Query (Q) and Component (C)
a.rnatCh(Qsignaturey Csignature) vV amatch(Qspecification, Cspeciﬁcaﬁon) \Y

ametCh(Qpattem7 Cpattem) \4 aInatCh(erameworky Cframework)

An analogy between two subjects is determined to
exist if the signature or specification on object level
between query models and component models is similar
or if the interface or the mutual application of patterns on
pattern level is similar. The fact that an analogy exists
between a query and component means that a successive
transformation rules which can be applied to either the
query or component exists. The basic matching function
necessary for this has been defined as follows.

(Definition 2) Basic Matching function
(1) Type Equality Ti = T2
@ T and T2 has same name

@ T; and T has same type
@ if Tileyes,...en), Tolmy,my,...mm) are complex type
Ve, 3m ' g =. m(1<i<n, 1<j<m)

@ if Tileyey,...e)) is complex type

Jer g = Tp (1<i<n
(2) Renaming E =, E’
DO RE) = E or

@ Is a(E, E') € DesignlLibrary
(3) Type Equivalence Ty =4 T2
QT = Te _
@ if Tileyes,...en), Tolmy,my,...my) are complex type
(1<i<n, 1<j<m)
® if only Tile;es,...en)is complex type
Jei-eg =, T, (1<i<n)
(4) Matching by reOrdering Ol =, 02
Ve, AImED: - = m; (1<i<n, 1<j<m)
O : Parameter Set | Attribute Set | Operation Set
e, my : ParameterName | AttributeName | OperationName

\7'ei, ij g =y,

The (1) in (Definition 2) is the definition of the standard
which evaluates whether the type of the two subjects are
consistent, while (2) verifies whether a homogeneosity can
be recognized even if the names and data types of the
two subjects for matching are not the same. In addition,
in (3) of (Definition 2), the level which can possess a
semantic homogeneosity has been defined, even if the two
subjects for matching are not completely consistent, while
in (4), because the parameter, attribute name, and operation
name are represented as a collective concept, it has been
defined that matching can occur irrelevant to the sequence
which has been recorded.

Besides the function necessary in order to transform
the syntactical characteristics represented in the signature,
semantic matching based on the specification is necessary
in order to determine the objectives and intentions of the
model.

The basic concepts used for semantic matching is
homomorphism and isomorphism([8]. (Definition 3) is the
definition of general homomorphism and joint morphism.

(Definition 3)
$=(8,< F): signature , ABEAlg(X).
Y homomorphism ¢&:A—B is function satisfying
the following condition.
D dolfPstsnsl@, vy 30)) = Pstsns(Gar(@r), ..., dsal@n))
for all fi(sy, ..., sn) — s€F, a€Ay, i=1, .., n,
@ s<t implies ds(a)=dila) for all acEA..

In (Definition 3) of above, @ is the definition of homo-
morphism, which means that mapping which responds to

QI ZXIE 71822 3t A2 THALE 669

B can be discovered in accordance to the successive mapping
function in regards to the mapping defined in A, whereas
(@ is the definition of joint morphism, which means that
not only can A respond to B, but B can respond to A, as well.

4.3.1 Object Signature Matching

If the type of object is completely consistent or if
judged to share homogeneosity based on domain information
defined in the design library, the objects is considered
similar. In addition, the two objects are judged to be
similar if there is either consistency or homogeneosity
between the define attributes or if the characteristic between
operations are considered homogeneous.

(Definition 4) Complete Matching Function of object
queries vs between object components
Exact_amatch(OQingertaces OCintertace)
@ (ObjectKind(0OQ) =. ObjectKind(OC) V
ObjectKind(0Q) =, ObjectKind(OC)) or
@ (Vattribute,Eset of Attributes(OQ),
Jattribute.Eset of Attributes(OC)
attribute, =. attribute. V attribute, =, attribute.} or
@ (Voperation,Eset of Operations(0Q),
Joperation.Eset of Operations(OC)
operation, =. operation. V operation, =, operation,)

(Definition 4) is to distinguish cases in which all of the
characteristics represented within the query are represented
in the component. In this case, things not represented
within the query can exist within components, and the
query can be redefined based on the additionally repre-
sentations of the components.

(Definition 5) Partial Matching Function of object queries
versus between object components
Partial_amatch(OQintertace, OCinterface)
D (V attribute. € set-of - Attributes(OC),
J attribute, € set-of - Attributes(OQ)
attribute, =. attribute. V attribute, =, attribute;) or
® (V operation. set-of-Operations(OC),
3 operation, € set-of -Operations(OQ)
operation, =. operation. V operation, =g operationc)

In the case of (Definition 5), although everything represented
within the component can respond to query elements, this
is a case in which some of the elements represented in
the query may not be represented within the component.
However, it is still considered similar because the query
can be either redefined through the component or
reconfigure the query by inheriting the components. This

670 XEX2Istel==X D ®14-DA Hi6z2(2007.10)

is defined the as partial matching function.

(Definition 6) Partial Matching Function of object queries
versus between object components
Partial_amatch(OQintertace, PCinterface)
(Jattribute,Eset of Attributes(OQ),
Jobject.Eset of Objects(PC)
attribute, =. Object. V attribute; =4 Objecte)

In (Definition 6), this is the partial matching function
which determines the structural similarity between queries
written through objects and between patterns saved
within the reuse library. This is a function which identifies
instances of when certain attributes represented in certain
objects are represented as independent objects in a different
model.

4.3.2 Object Specification Matching

In order to determine the behavioral similarity between
objects, Object Specification Matching is something which
determines the level of consistency and behavioral consistency
regarding the state domain for objects. In addition, in cases
when restrictive conditions regarding the attributes of an
object exist, the consistency of such conditions must be
considered, as well.

(Definition 7) amatch(OQsehavior, OChehavior)

if Pre State(operationy = Pre State(operation:) or
Pre State(operation,) =, Pre State(operation.)
thenPost State(operation,) =. Post State(operation.) or
Post State(operation,) =q Post State(operationc)

(Definition 7) refers to the similarity of the method of
response for similar operations in similar states. Although
is represented as an abstract state concept (Full, Waiting
for something, etc) in most object models, it is also
represented as a specific conditional expression (X.time <
100 A yinterval > 10). Instances of representation as a
specific conditional expression such as this apply techniques
used in existing techniques for reusing specifications. In
existing reuse of specifications, the existing specification
is defined to be possible for reuse if the implication
principle between the preceding conditions and following
conditions can be established. The matching for the entire
dynamic characteristics of an object has been defined as
(Definition 8).

(Definition 8) Behavior Graph BG(V, E)
V = {v; | v; is AbstractState}

E = {(U, v, D l (U, V € V) A (is EventName)}

Behaviors which demonstrate the dynamic characteristics
of objects can be expressed as a directional graph. In
(Definition 8), the state represented in behaviors have
been expressed as nodes on the graph, and the transition
from one state to another have be expressed as a direction
edge. The event name is expressed as the edge label.

(Definition 9) complete matching function of object
specification Exact_amatch(BGQ, BGC)
Yuv) € BGQ - I(fw), fv), f1))E BGC,
(¢ f:E—E)
// BGQ(V, E) : Object Behavior Graph for Query
BGC(V", E") : Object Behavior Graph of Component

By representing object behaviors through graphs, the
analogical matching of object behaviors can apply concepts
regarding homomorphism and joint morphism on the graph.

The full matching of object specification signifies that
each state transition principles as defined in queries can
correspond to the state transition principles of components
and as defined in (Definition 9) refers to instances when
the behavioral type of an object is completely consistent,
However, since these types of matching through isomo-
rphism is too limiting, (Definition 10) proposes partial
matching through homomorphism.

(Definition 10) Partial Matching Function for Object
Specification Partial_amatch(BGQ, BGC)
@ 3y, v, DEBGQ - (W), f(v), {)EBGC, (E — E)
@ Exact_amatch(BGQ', BGC) exists for BGQ'
(3 Exact_amatch(BGQ, BGC") exists for BGQ'
// BGQ'(V'E") © extended graph of BGQ
V' =V Ulv},
E' = E U {{yyw]), (vi,vi,])}
(, v,ZwEV, WE V, (wwDEE, (wwl'), (Vi, Vi l")
/€ E,
1')” : newly defined event)
BGC' (V' E’) : extended graph of BGC
V' =V Ulvit
E' =E U {tviywil), (vivx,")}
(viwEV, weV, Wi)EE, Wwl), (vivl”)
/e /e F
1I']" : newly defined event)

The @ in (Definition 10) signifies that among the
behavioral types which exist fundamentally in queries,
even if one of these types can be discovered in the
component. it is proposed to be a reuse model candidate.
With this foundation, in @ and @ of (Definition 10), by
adding new states(vi) within the behaviors of queries or

the behaviors of components, if full consistency between
the behaviors of queries and the behaviors of components
occurs, then a partial matching between the two can be
thought to be established. By adding new states and
defining new state transition principles, this is to determine
whether isomorphism can be defined between the two
behavioral graphs. Through this, reuse candidates can be
identified by carrying similar behavioral structures, even
if they possess differing state domains or if the transition
principles are not completely consistent.

(Definition 11) Behavior matching function with behavior
comformance {Qpehavior, Chehavior)
@ Pre-State(Q) = Pre-State(C)
@ (Pre-State(Q) = Post-State(Q)) < Post-State(C)

4.4 Analogical Agent

Based on previous defined analogy matching function,
we are constructing the analogical agent. (Fig. 4) show
the process model of agent. The developers construct
their initial query with object model. Then, the model
interpreter analyzes the model and transforms the internal
representation for matching. During this step, the domain
knowledge of design library can help the transformation.
If the domain knowledge were not enough, the agent can
interact with the modeler for further domain information.
If the internal representation made, the analogical matching
engine retrieves the candidate models from the library.
So, new developer can customize her model with previous
models and identify what models are better. Also, they
can know how to define the relationship among the classes.
We are developing the first prototype with architecture
define in (Fig. 5). In the library, object, pattern and
framework are stored and associated sematinc information

[Target Object Model

‘_ Pattern Library

Candidate Pattern ——»

Target Solution

(Fig. 4) Flow Diagram of Reuse System

Ol 2XIE 7IEICR 3t A ZHOl THALE 671

in terns of signature and specification. Agent retrieve the
candiate model stored in library comparing with user model
using mathing engine

45 Case Study

We showed simple case study for revising the exsiting
object model based refrieved by analogical reasoning agent.
It is based on problem staement written in section 3. In
the library, there are order/delievery object model whose
structure is similar with library model even though two
are the different application and their object and relations are
different. But there are relativeness among the strucutre
and behavior. For example, item to be delivered by customer
corresponds to book to be borrowed by member. In other
words, two different model are analogous. During the modeling
the library application, order/delievery object model can be
good design pattern for modeling.

In our case, (Fig. 6) is the first object model for library
system. Based on this object model, analogical agent
retrieve the library for extracting analogous object model
and get the order/delievery object model. With this, object

Tiser Interface

Model Spec
Editor Editor Browser
Editor

Model
Interpreter
Matching Engine

Clasificat
Clustering Information
\\—/ Domain haowledze
Specifieation
Signature Specification v
rimal, Tevt)
rometded
Model Component
e

(Fig. 5) Architecture of Analogical Agent

Analogical Aggn

=

My Unwersity m Other Unwersity
Library Library

Punching Card
Archive

(Fig. 6) Original object model for library system

672 NEAMES=2X D H14-DF X6=(2007.10)

E epartment

work-for

UniversityLiorary|

New - Existing -w

quester | register | Requester

(Fig. 7) Revised object model

modeler revied original model. For example more detail
object ‘model from requester can be identified and new
association object can be identified. Revised result was
shown in (Fig.7).

5. Evaluation

In order to verify the efficiency of the reuse techniques
proposed in this paper, evaluation was conducted through
widely used evaluation standards of recall and precision.

5.1 Evaluation through Recall and Precision

Recall is the evaluation standard which tests the capability
to remove unrelated components from the search and is
defined as a ratio for components which are suitable with
the actual query among the searched components. Precision
is the evaluation regarding the search capability for related
components. It is defined as a ratio of the searched
components from all of the components which satisfy the
query[14].

<Table.l> presents the results for full matching and
partial matching regarding both the object unit search and
pattern unit search.

(Table. 1> Evaluation Results in accordance to Recall, Precision

(a) Evaluation Results for Recall

Object Search

Full Search 56.3

Partial Search %8

(b) Evaluation Results for Precision

Object Search

Full Search 78.6

Partial Search 66.3

The evaluation standard dependent upon recall and
precision satisfied average standards{14] upon application
to the system constructed in this paper. In terms of
precision and search scale, it was found that cases for
object searches were better than cases for pattern
searches. Although the matching results is not largely
influenced by the designer as there are only one match
subject for an object, with patterns, on the other hand,
even if the same associativeness is defined it is completely
up to the designer to determine what types of mutual
applications will occur between the objects through such
associativeness and which behaviors will be shared.

This is an issue which cannot be completely resolved
even by applying homomorphism within signature matching
of patterns or by conducting matches based on pattern
specification. The precision of pattern matching can be
seen to decrease even within the evaluation results. This
is because the matching function was applied centered on
the pattern structure in the matching for pattern specification,
and due to the fact that characteristics of the classes
which comprise a pattern are attempting to solve different
problems. However, with partial matching, a satisfying recall
rate was acquire even in the case of patterns, and through
this base, a model required within a problematic domain
can be completed through user dependent modifications.

4.2 Comparison with different classification techniques

Models and pattern searches based on matching techniques
carry the following advantages when compared to the
facet technique or decimal classification used in existing
search systems. In the case of the Facet technique or the
decimal classification technique, the library developer writes
the hierarchy between models by first possessing a class-
ification standard of models and deciding the terms included
between Facet and Facet. However, when examining
examples proposed for Facets regarding actual software,
such as Function, Object, Media, Language, Environment,
and others as proposed by Diaz, they represent either the
possibilities for operation of a function or subjects for
application. In other words, it is extremely difficult to
have a set of already defined terms or facets. Also, it is
also difficult to define the hierarchy between models. In
other words, defining the conceptual or implementational
hierarchial structure between models is difficult to do.
From this viewpoint, it is difficult to apply the facet technique
or the hierarchical classification technique, which defines
a fixed frame, during the search or reuse process for a
model in which th the intentions of the developer are
expressed. In comparison to this, after saving a well-established

model or previously verified model into the library, the
matching technique allows the user who is writing a
model within a new domain to conduct searches by matching
with similér models already saved in the library, which
can be used to serve as a foundation.

6. Conclusion

The reuse of models carries many advantages. As models
show the abstract concept in regards to a problem, it
facilitates in the understanding of the problems within a
corresponding area by providing knowledge and a problem

solution viewpoint for a corresponding domain for developers.

inexperienced in regards to a problem faced during a new
development. In addition, by referencing existing models
during the modelling phase, the experience from previous
modelling can be reused and consequently will assist in
correct construction of the model.

When writing object models regarding new problems,
this research proposes a method allowing for the reuse of
models and patterns within the library by determining the
analogy regarding queries and components in order to
provide an environment which allows reuse of previous
experience during the abstraction process of models and
during the process establishing associativeness between
objects. In order to reuse models, patterns, which include
an object, the smallest unit of object models, and the
associativeness between objects, were used to distinguish
subjects for reuse and to establish the representation
technique necessary for saving each one. The analogical
matching technique was applied since the technique for
the reuse of models differs from the technique for reuse
of code, and consequently, is not possible to determine
the similarity level through full consistency of the
components. For this, the necessary information structures
and the functions necessary to evaluate matching were
defined by subjects for reuse. In addition, the analogical
agent was designed in order to provide an environment
which provides models suitable for users during the
model write up process. Developers can write partial
models centered around objects distinguished for the first
time upon confronting a problem and with this foundation,
similar objects from the library can be searched, and from
this, the objects can be distinguished and information
necessary in order to define the characteristics of objects
can be received. By repeating these types of processes,
the objects can be distinguished, the associativeness between
the distinguished objects can be defined, and the pattern
unit can be searched from the library

Ol 2XIE 7IRIe2 o HHZHOl THALE 673

References

[1] R. Brey, ‘Algebraic Specification Techniques in Object Oriented
Programming Environment,” Spring-Verlag, 1991.

[2] Peter Deutsch, ‘Design reuse and framework in the Smalltalk-
&0 system,’ In Ted J. Biggerstaff and Alan J. Perlis, Editors,
Software Reusability (II), 57-72, ACM Press, 1989.

[3] Ruben Prieto Diaz, ‘A Software Classification Scheme,
Ph.D. thesis, University of Irvine, 1985.

[4] Brian Falkenhainer, et. al., ‘The Structure Mapping Engine:
Algorithm and Examples, Artificial Intelligence, 41, 1-63,
1989/90.

[5] Martin Fowler, ‘Analysis Patterns, Reusable Object Models,
Addison Wesley, 1897.

[6] Erich Gamma, et. al,, ‘Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[7] Gedre Gentner, “The mechanisms of analogical learning,” In
Bruce G. Buchanan and David C. Wilkins, editors, Readings
in Knowledge Acquisition and Learning, Morgan Kaufmann
Publishers, 673-694, 1993,

[8] Seymour Lipschutz, ‘Discrete Mathematics, McGraw-Hill

[9] Neil Arthur McDougall Maiden, ‘Analogical Specification
Reuse During Requirements Analysis,” Ph.D. thesis, City
University, London, July 1992.

[10] Bertrand Meyer, ‘Reusability: The case for object-oriented
design’ In Ted J. Biggerstaff and Alan J. Perlis, editors, Software
Reusability (II), 1-34, ACM Press, 1980.

[11] Tim O'Shea, ‘The learnability of object oriented programming
systems, OOPSLA'86 proceedings, 502-504, Sep. 1936.
[12] Bruce W. Porter, et. al., ‘Concept Learning and Heuristic
Classification in Weak Theory Domains,’ Artificial Intelligence,

45, 229-263, 1990.

[13] James Rumbauch, et. al, ‘Object Oriented Modeling and
Design, Prentice Hall, 1991.

[14) G. Salton and M. J. Mcgill, ‘Introduction to Modern

Information Retrieval, McGraw-Hill, 1983.

[15] R. Alan Whitehurst, ‘Systemic Software Reuse Through
Analogical Reasoning, Ph.D. thesis, University of Hlinois
at Urbana-Champaign, 1995.

[16] Frank Feiks, David Hemer, ‘Specification Matching of Object-
Oriented Components, sefm, p.182, First International Conference
on Software Engineering and Formal Methods (SEFM’03),
2003.

[17] David Hemer, ‘Specification matching of state-bhased modular
components, apsec, p446, 10th Asia-Pacific Software Engineering
Conference (APSEC'03), 2003.

[18] David Hemer, Peter Lindsay, ‘Specification-Based Retrieval
Strategies for Module Reuse,” aswec, p.0235, 13th Australian
Software Engineering Conference (ASWEC'01), 2001.

674 HEXPISS=2KID M14-DH H6Z(2007.10)

o A el
e-mail : gemini@kd.ac.kr
19913 FSista HAHA
19939 FASR thote AFE I

o

o
:._l,
ofd
o

N
st

(FRAR
1908 Fvistm e AFEHI N
(8

20039 ~2007 89 319 HEYFL EFHFATE 27
19999~ A BEOSE AFHLEI}

il
FABoL: ATEYOIZZ AN, AFE R

