Comparisons in Anatomical Morphology Between Soybean Cultivars of Different Flooding Tolerance under Early Vegetative Flooding Conditions

영양생장기 습해 처리에 따른 콩 품종의 해부형태학적 특성 비교

  • Lee, Choong-Yeul (Plant Bioscience, College of Natural Resource & Life Science, Pusan National Univ.) ;
  • Cho, Jin-Woong (Div. of Plant Sci. & Resources, College of Agricultural & Life Science, Chungnam National Univ.)
  • 이충열 (부산대학교 생명자원과학대학) ;
  • 조진웅 (충남대학교 농업생명과학대학)
  • Published : 2007.09.30

Abstract

To characterize flooding-affected anatomical morphology changes in soybean, flooding-tolerant cv Pung-sannamulkong (PSNK) and flooding-sensitive cv. Sobaek-namulkong (SBNK) at 5 trifoliate leaf stage were exposed to flooding by maintaining tap water 2 cm above soil surface for 9 days and resultant microscopic anatomical changes in leaf and hypocotyl cross-sections along with chlorophyll content and photosynthetic rate changes were compared. Flooding-sensitive SBNK exhibited more significant decrement in chlorophyll content, photosynthetic rate, number of palisade parenchyma, and leaf dry matter compared to cv. PSNK. Flooding decreased fineness of palisade parenchyma, while inducing wider xylem vessel, especially in PSNK. The aerenchyma formation in hypocotyls under flooding could be observed only in flooding-resistant PSNK. All these anatomical changes seems to be related with higher physiolocial activity and resultant resistance against flooding in PSNK compared to flood-sensitive PSNK.

본 실험은 내습성 품종과 감수성 품종을 5엽기에 9일간 침수 처리한 후 잎과 배축을 대상으로 횡단면을 해부학적 특성을 광학현미경으로 관찰하여 그 결과 다음과 같다. 1. 엽록소함량, 광합성, 책상조직 수, 엽두께 및 잎 건물중은 습해에 의해 급격히 감소되었으며 풍산나물콩보다 소백나물콩의 감소가 더 많았다. 2. 잎 조직의 책상조직의 치밀함은 습해에 의해 급격히 감소되었고 품종간 차이도 관찰되었으며, 풍산나물콩은 주맥의 통도조직 중 목부의 발달을 볼 수 있었다. 3. 배축의 통기조직 형성은 소백나물콩은 보이지 않았으나 풍산나물콩은 피층에 파생통기조직이 형성되는 것을 볼 수 있었다.

Keywords

References

  1. 농림부. 2005. 농림통계연보
  2. 농림부. 2006. 농림업 주요통계
  3. Arikado, H. 1954. Different responses of soybean plants to an excess of water with special reference to anatomical observations. Proc. Crop Sci. Soc. Japen. 23 : 28-36
  4. Bacanamwo, M. and L. C. Purcell. 1999. Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Sci. 39 : 143-149 https://doi.org/10.2135/cropsci1999.0011183X003900010023x
  5. Boyer, E. M. 1979. Effect of silver ion, carbon dioxide, and oxygen on ethylene action and metabolism. Plant Physiol. 63 : 169-173 https://doi.org/10.1104/pp.63.1.169
  6. Cho, J. W., J. H. Ji, and T. Yamakawa. 2006. Comparison of photosynthetic response of two soybean cultivars to soil flooding. J. Fac. Agr., Kyushu Univ. 51 : 227-232
  7. Cho, J. W. and T. Yamakawa. 2006. Tolerence differences among small seed soybean cultivars against excessive water stress conditions. J. Fac. Agr., Kyushu Univ. 51: 195-199
  8. Cho, J. W., J. J. Lee, Y. J. Oh, J. D. So, J. Y. Won, and C. H. Kim. 2006. Soybean growth and yield as affected by spacing of drainage furrows in paddy field. Korean J. Crop Sci. 51 : 26-31
  9. Grable, A. and R. E. Danielson. 1965. Effect of carbon dioside, oxygen, and soil moisture suction on germination of corn and soybeans. Soil Sci. Soc. Am. Proc. 29 : 12-18
  10. Griffin, J. L. and A. M. Saxton. 1988. Response of solid-seeded soybean to flood irrigation. II. Flood duration. Agron. J. 80 : 885-888 https://doi.org/10.2134/agronj1988.00021962008000060009x
  11. Grimoldi, A. A., P. Insausti, G. Roitman, and A. Soriano. 1999. Responses to flooding intensity in Leontodon taraxacides. New Physiol. 141: 119-128 https://doi.org/10.1046/j.1469-8137.1999.00325.x
  12. Jackson, M. B. and W. Armstrong. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1 : 274-287 https://doi.org/10.1111/j.1438-8677.1999.tb00253.x
  13. Linkemer, G., J. E. Board, and Mary E. Musgrave. 1998. Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci. 38 : 1579-1584
  14. Mochizuki, T., Y. Nada, and M. Fukuyama. 2003. Secondary arenchyma formation, growth and yield of soybean plants grown under continuously flooded conditions. Jpn. J. Crop Sci. 72 : 25-31 https://doi.org/10.1626/jcs.72.25
  15. Kim, Y. J., K. S. Lee, S. U. Chun, Y. J. Oh, K. H. Kim, J. S. Choi, and M. H. Lee. 2003. Photosynthesis and leaf anatomical morphology on different leaf shape of soybean. Korean J. Crop Sci. 48 : 248-251
  16. Russell, D. A., D. M. L. Wong, and M. M. Sachs. 1990. The anaerobic response of soybean. Plant Physiol. 92 : 401-494 https://doi.org/10.1104/pp.92.2.401
  17. Sallam, A. and H. D. Scott. 1987. Effects of prolonged flooding on soybeans during early vegetative growth. Soil Sci. 144 : 61-66 https://doi.org/10.1097/00010694-198707000-00010
  18. Shibles, R., J. Secor, and D. M. Ford. 1987. Carbon assimilation and metabolism. In J. R. Wilcox et al. (ed.) Soybeans : Improvement, production and uses. Amer. Soc. Of Agron., Madison, WI, pp. 535-588
  19. Shimamura, S., T. Mochizuki, Y. Nada, and M. Fukuyama. 2003. Formation and function of seconsary arenchyma in hypocotyls, roots and nodules of soybean (Glycine max) under flooded conditions. Plant and Soil. 251 : 351-359 https://doi.org/10.1023/A:1023036720537
  20. Yoshida, S., D. A. Forno, J. H. Cock, and K. A. Gomez. 1972. Laboratory manual for physiological studies of rice. 2nd Ed. IRRI