DOI QR코드

DOI QR Code

Isoflavone-Rich Bean Sprouts Improves Hyperlipidemia

고이소플라본 콩나물의 고지혈증 개선효과

  • Kim, Youn-Hee (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Lee, Ji-Hye (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Koo, Bo-Kyung (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Lee, Hye-Sung (Department of Food Science and Nutrition, Kyungpook National University)
  • 김연희 (경북대학교 식품영양학과) ;
  • 이지혜 (경북대학교 식품영양학과) ;
  • 구보경 (경북대학교 식품영양학과) ;
  • 이혜성 (경북대학교 식품영양학과)
  • Published : 2007.10.30

Abstract

The present study examined the physiological effects of isoflavone-rich bean sprout on the lipid metabolism of hyperlipidemic rats. Experimental hyperlipidemia was induced by the AIN standard diet with 0.5% cholesterol,9.3% lard and 0.2% sodium cholate in SD rats. Experimental groups consisted of normal control, hyperlipidemic control, 1% or 5% bean sprout powder-supplemented groups, and 0.2% soybean isoflauone extract-supplemented group. Four weeks feeding of isoflavone-rich bean sprout powder or isoflavone extract resulted in a significant lowering of plasma cholesterol and lowering tendency of triglyceride levels. The levels of lipid peroxidation products in the kidney and heart tissues were also lowered by the supplementation of bean sprout powder or isoflavone extract. The activities of hepatic glutathione peroxidase and catalase were increased by the supplementation of bean sprout powder or soybean isoflavone extract. Plasma concentration of vitamin A was significantly raised in the group fed 0.5% bean sprout powder. The results of the study showed that the beneficial effects of isoflavone-rich bean sprout on lipid metabolism of hyperlipidemic animals were comparable with those of soybean isoflavone extract. The positive effect of bean sprout in improving lipid metabolism might be due to the combined action of isoflavone and dietary fiber.

본 연구에서는 선행연구에서 우량 콩나물로 선별된 이소 플라본을 다량 함유한 콩나물의 투여가 실험적으로 유발된 고지혈증 흰쥐의 지질대사에 미치는 효과를 조사하였다. 고지혈증은 SD계 흰쥐에 cholesterol 0.5%, lard 9.3%, sodium cholate 0.2%를 함유한 AIN standard식이에 의해 유발되었다. 실험군은 정상 대조군, 고지혈증 대조군, 고지혈증 유발식이에 1%, 5% 콩나물 분말, 또는 0.2% 대두 이소플라본 추출물 보충군으로 하였다. 실험식을 4주간 투여한 후 혈장 지질과 과산화물 수준, 간조직의 항산화효소 활성도, 혈장 항산화 영양소 수준을 측정하여 다음과 같은 결과를 얻었다. 콩나물 분말의 보충 투여는 고지혈증 동물의 식이효율$(0.33{\sim}0.34)$에 영향을 미치지 않았으며 고지혈증 쥐에서 혈장 중성지질의 저하 경향을 보였으며 총 콜레스테롤 농도의 유의적인 저하효과를 나타내었다. 또한 콩나물 분말 투여는 고지혈증 동물들에서 투여량에 관계없이 혈장과 간, 신장, 심장 등 조직 중의 지질과산화물 수준을 낮추는 경향을 보였으나 그 저하효과는 대두 이소플라본 추출물의 효과보다는 낮았다. Catalase와 glutathione peroxidase 등 항산화효소들의 활성도는 고이소플라본콩나물의 투여로 대조군에 비해 유의적이지는 않았지만 증가되는 경향을 나타냈으며 혈장의 vitamin A수준은 5% 콩나물 투여군에서 유의적으로 높았고 vitamin E 수준은 유의적인 차이가 없었다. 이상의 결과로부터 이소플라본이 풍부한 콩나물의 투여는 고지혈증 동물에서 혈중지질 개선효과가 대두 이소플라본 추출물의 효과와 유사하거나 더 높은 것으로 나타났으며, 유의적이지는 않았으나 조직중 지질과산화물생성을 억제하고 항산화영양소 수준을 높이는 경향을 나타내었다. 이와 같은 결과는 본 실험에서 사용한 콩나물 시료가 높은 이소플라본 함량 이외에도 식이섬유를 다량 함유하고 있으므로 섬유에 의한 부가적인 효과에 의한 것으로 추정되며 콩나물의 영양적 우수성을 일부 입증한 결과로 평가된다.

Keywords

References

  1. National Annual Food Supply Data. 2007. Korea Rural Economic Institute
  2. Annual report on the cause of death statistics. 2005. National Statistics Office
  3. JAMA. 1993. Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults 269: 3015-3023
  4. Balmir F, Staack R, Jeffrey E. 1996. An extract of soy flour influences serum cholesterol and thyroid hormones in rats and hamsters. J Nutr 126: 3046-3053
  5. Anthony MS, Clarkson TB, Bullock BC, Wagner JD. 1997. Soy protein versus soy phytoestrogens in the prevention of diet-induced coronary artery atherosclerosis of male cynomolgus monkeys. Arterioscler Thromb Vasc Biol 17: 2524-2531 https://doi.org/10.1161/01.ATV.17.11.2524
  6. Tovar-Palacio C, Potter SM, Hafermann JC, Shay NF. 1998. Intake of soy protein and soy protein extracts influences lipid metabolism and hepatic gene espression in gerbils. J Nutr 128: 839-842
  7. Anthony MS, Clarkson TB, Williams JK. 1998. Effects of soy isoflavones on atherosclerosis: potential mechanisms. Am J Clin Nutr 68: 1390s-1393s https://doi.org/10.1093/ajcn/68.6.1390S
  8. Cassidy A, Griffin B. 1999. Phyto-oestrogens: a potential role in the prevention of CHD. Proc Nutr Soc 58: 193-199 https://doi.org/10.1079/PNS19990025
  9. Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC. 1998. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. J Nutr 128: 954-959
  10. Ruiz-Larrea MB, Mohan A, Miller NJ, Bolwell GP, Rice-Evans CA. 1997. Antioxidant activity of phytoestrogenic isoflavones. Free Radic Res 26: 63-70 https://doi.org/10.3109/10715769709097785
  11. Arora A, Byrem TM, Nair MG, Strasburg GM. 2000. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373: 102-109 https://doi.org/10.1006/abbi.1999.1525
  12. Lehtonen JA, Adlercreutzn H, Kinnunen PKJ. 1996. Binding of daidzein to liposomes. Biochem Biophys Acta 1285: 91-100 https://doi.org/10.1016/S0005-2736(96)00154-X
  13. Hodgson JM, Croft KD, Puddey IB, Mori TA, Beilin LJ. 1996. Soybean isoflavonoids and their metabolic procucts inhibit in vitro lipoprotein oxidation in serum. J Nutr Biochem 7: 664-669 https://doi.org/10.1016/S0955-2863(96)00133-7
  14. Yamakoshi J, Piskula MK, Izumi T, Tobe K, Saito M, Kataoka S, Obata A, Kikuchi M. 2000. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits. J Nutr 130: 1887-1893
  15. Kapiotis S, Hermann M, Held I, Seelos C, Ehringer H, Gmeiner BMK. 1997. Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17: 2868-2874 https://doi.org/10.1161/01.ATV.17.11.2868
  16. Tikkanen MJ, Wahala K, Ojala S, Vihma V, Adlercreutz H. 1998. Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Natl Acad Sci U S A 95: 3106-3110 https://doi.org/10.1073/pnas.95.6.3106
  17. Tikkanen MJ, Adkerceutz H. 2000. Dietary soy-derived isoflavone phytoestrogens. Could they have a role in coronary heart disease prevention? Biochem Pharmacol 60: 1-5 https://doi.org/10.1016/S0006-2952(99)00409-8
  18. Baum JA, Teng H, Erdman JW Jr, Weigel RM, Klein BP, Persky VW, Freels S, Surya P, Bakhit RM, Ramos E, Shay NF, Potter SM. 1998. Long-term intake of soy protein improves blood lipid profiles and increases mononuclear cell low-density-lipoprotein receptor messenger RNA in hypercholesterolemic, postmenopausal women. Am J Clin Nutr 68: 545-551 https://doi.org/10.1093/ajcn/68.3.545
  19. Kim YH, Hwang YH, Lee HS. 2003. Analysis of isoflavones for 66 varieties of spout beans and bean sporouts. Kor J Food Sci Tech 35: 568-575
  20. Lee SK, Lee MJ, Yoon S, Kwon DJ. 2000. Estimaterd isoflavone intake from soy products in Korean middle-aged woman. J Korean Soc Food Sci Nutr 29: 948-956
  21. Prosky L, Asp NG, Schweizer TF, Devries JW, Furda I. 1988. Determination of insoluble, soluble and total dietary fiber in foods and food products: Interlaboratory study. J Assoc Off Anal Chem 71: 1017-1023
  22. Bucolo G, David H. 1973. Quantitative determination of serum triglycerides by use of enzymes. Clin Chem 19: 476-482
  23. Allain CC, Poon LS, Chen CS, Richmond W. 1974. Enzymatic determination of total serum cholesterol. Clin Chem 20: 470-475
  24. Finley PR, Schifman RB, Williams RJ, Luchti DA. 1978. Cholesterol in high-density lipoprotein: Use of mg2+/dextran sulfate in its measurement. Clin Chem 24: 931-933
  25. Tarladgis BG, Pearson AM, Duan LR. 1964. Chemistry of the 2-thiobarbituric acid test for determination of oxidative rancidity in foods. J Sci Food Agri 15: 602-607 https://doi.org/10.1002/jsfa.2740150904
  26. Uchiyama M, Mihara M. 1978. Determination of malondialdehyde precursor in tissues by TBA test. Anal Biochem 86: 271-278 https://doi.org/10.1016/0003-2697(78)90342-1
  27. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  28. Abei H. 1974. Catalase. In Method of Enzymatic Analysis. Academic Press, New York. Vol 2, p 673-684
  29. Paglia PE, Valentine WN. 1967. Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Lab Clin Med 70: 158-169
  30. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  31. Bieri G, Toliver JJ, Catignani GL. 1979. Simultaneous determination of alpha-tocopherol and retinol in plasma or red blood cells by high pressure liquid chromatography. Am J Clin Nutr 32: 2143-2149 https://doi.org/10.1093/ajcn/32.10.2143
  32. Hair JF, Anderson RE, Tatham RL, Black WC. 1995. Mulivariate data analysis with readings. 4th ed. Preatice- Hall International Editions, USA
  33. Potter SM. 1996. Soy protein and serum lipids. Curr Opin Lipidol 7: 260-264 https://doi.org/10.1097/00041433-199608000-00013
  34. Lichtenstein AH. 1998. Soy protein, isoflavones and cardiovascular disease risk. J Nutr 128: 1589-1592
  35. Zhan S, Ho SC. 2005. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr 81: 397-408 https://doi.org/10.1093/ajcn.81.2.397
  36. Anderson JW, Johnstone BM, Cook-Newell ME. 1995. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 333: 276-282 https://doi.org/10.1056/NEJM199508033330502
  37. Hall WL, Vafeisdou K, Hallund J, Bugel S, Reimann M, Koebnick C, Zunft HJF, Ferrari M, Branca F, Talbot D, Powell J, Minihane AM, Cassidy A, Nilsson M, Dahlman-Wright K, Gustafsson JA, Williams CM. 2006. Soy-isoflavone-enriched foods and markers of lipid and glucose metabolism in postmenopausal woman: interactions with genotype and equol production. Am J Clin Nutr 83: 592- 600 https://doi.org/10.1093/ajcn.83.3.592
  38. Honore EK, Williams JK, Anthony MS, Clarkson TB. 1997. Soy isoflavones enhance coronary vascular reactivity in atherosclerotic female macaques. Feril Steril 67: 148-154 https://doi.org/10.1016/S0015-0282(97)81872-9
  39. Choi MK, Jun YS. 2006. A comparative study on isoflavone intakes and blood lipids between hypertensive and normotensive. Kor J Commun Nutr 11: 271-278
  40. Desroches S, Mauger JF, Ausman LM, Lichtenstein AH, Lamarche B. 2004. Soy protein flavorably affects LDL size independently of isoflavones in hypercholesterolemic men and women. J Nutr 134: 574-579
  41. Lin Y, Meijer GW, Vermeer MA, Trautwein EA. 2004. Soy protein enhances the cholesterol-lowering effect of plant sterol esters in cholesterol-fed hamsters. J Nutr 134: 143-148
  42. Wright SM, Salter AM. 1998. Effects of soy protein on plasma cholesterol and bile acid excretion in hamsters. Comp Biochem Physiol B Biochem Mol Biol 119: 247-254 https://doi.org/10.1016/S0305-0491(97)00288-5
  43. Forsythe WA. 1995. Soy protein, thyroid regulation and cholesterol metabolism. J Nutr 125: 619S-623S
  44. Sirtori CR, Lovati MR, Manzoni C, Monetti M, Pazzucconi F, Gatti E. 1995. Soy and cholesterol reduction. clinical experience. J Nutr 125: 598S-605S
  45. Pierro DD, Tavazzi B, Lazzarino G, Giardina B. 1992. Malondialdehyde is a biochemical marker of peroxidative damage in the isolated reperfused rat heart. Mol Cell Biochem 116: 193-196 https://doi.org/10.1007/BF01270587
  46. Addis PB, Waener GJ. 1991. Free radicals and food additives. Aruoma OI, Halliwell B, eds. Taylor and Francis, London, England. p 77
  47. Jurgens G, Lang J, Estwebauer H. 1986. Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochem Biophys Acta 875: 103- 114 https://doi.org/10.1016/0005-2760(86)90016-0
  48. Xu R, Yokoyama WH, Irving D, Rein D, Walzem RL, German JB. 1998. Effect of dietary catechin and vitamin E on aortic fatty streak accumulation in hypercholesterolemic hamsters. Atherosclerosis 137: 29-36 https://doi.org/10.1016/S0021-9150(97)00248-7
  49. Lee YS. 2001. Effect of isoflavones on proliferation and oxidative stress of MC3T3-E1 osteoblast like cells. Korea Soybean Digest 18: 35-42
  50. Cai Q, Wei H. 1996. Effect of dietary genistein on antioxidant enzyme activities in SENCAR mice. Nutr Cancer 25: 1-7 https://doi.org/10.1080/01635589609514423
  51. Urano S, Midori HH, Tochihi N, Matsue M, Shiraki M, Ito H. 1991. Vitamin E and the susceptibility of erythrocytes and reconstituted liposomes to oxidative stress in aged diabetics. Lipids 26: 58-61 https://doi.org/10.1007/BF02544025

Cited by

  1. Hepatoprotective Effects of Soybean Embryo by Enhancing Adiponectin-Mediated AMP-Activated Protein KinaseαPathway in High-Fat and High-Cholesterol Diet-Induced Nonalcoholic Fatty Liver Disease vol.19, pp.6, 2016, https://doi.org/10.1089/jmf.2015.3604
  2. Effect of the Plants Mixture and Garlic Composition on Serum Lipid Level of Hypercholesterolemic Rats vol.20, pp.3, 2010, https://doi.org/10.5352/JLS.2010.20.3.396
  3. Effects of the Soybean Powder with Rich Aglycone Isoflavone on Lipid Metabolism and Antioxidative Activities in Hyperlipidemic Rats vol.37, pp.3, 2008, https://doi.org/10.3746/jkfn.2008.37.3.302
  4. Effects of Portulaca oleracea Powder on the Lipid Levels of Rats Fed a Hypercholesterolemia Inducing Diet vol.16, pp.3, 2011, https://doi.org/10.3746/jfn.2011.16.3.202
  5. Effect of Tofu Manufactured from Lipoxygenase-free Genotypes Soybean on the Fecal Lipid Level and Hepatic Antioxidant Enzyme Activity in Rat Fed a High Fat-cholesterol Diet vol.49, pp.1, 2015, https://doi.org/10.14397/jals.2015.49.1.175
  6. Changes in the Nutritional Compositions of Soybean Sprouts Cultivated with Bamboo Ash vol.31, pp.3, 2016, https://doi.org/10.7318/KJFC/2016.31.3.213
  7. 한국인 다소비 채소의 에탄올 추출물이 LPS 처리된 대식세포에서 NO, TNF-${\alpha}$와 MCP-1 분비에 미치는 영향 vol.24, pp.6, 2014, https://doi.org/10.17495/easdl.2014.12.24.6.776