DOI QR코드

DOI QR Code

Pilot Production of Bacterial Cellulose by Gluconacetobacter hansenii TL-2C

Gluconacetobacter hansenii TL-2C에 의한 Bacterial Cellulose의 Pilot 생산

  • Jeong, Ji-Suk (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Kim, Jong-Sun (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Choi, Kyoung-Ho (Dept. of Food Science and Nutrition, Catholic University of Daegu)
  • 정지숙 (대구가톨릭대학교 식품영양학과) ;
  • 김종순 (대구가톨릭대학교 식품영양학과) ;
  • 최경호 (대구가톨릭대학교 식품영양학과)
  • Published : 2007.10.30

Abstract

This study was designed to ultimately develop a highly efficient mass production technology of bacterial cellulose isolated from the citrus gel fermented by G. hansenii TL-2C. Pilot equipment made with FRP vessel length (665 mm) ${\times}$ width (375 mm) ${\times}$ height (210 mm) was developed for mass production of the citrus gel. To develop the optimal conditions for mass production of citrus gel, comprised of citrus juice (6,000 mL) diluted 100 times, containing 5% seed bacteria, 10% sucrose, and 1% ethanol, citrus juice was fermented at $30^{\circ}C$ for 14 days, and gel productivity in pilot system was examined. BC was isolated and purified from the citrus gel, and their chemical composition and physicochemical properties were investigated.

본 연구에서는 국내산 감귤과즙을 이용하여 고기능성 세균 셀룰로오스를 대량생산하기 위해 감귤과즙으로부터 감귤 내성의 Gluconacetobacter hansenii TL-2C를 선별한 후 pilot 시설을 이용하여 감귤겔을 대량 생산할 수 있는 방법을 개발하였다. 유기산의 약 80%가 citric acid로 내성균의 분리가 부득이한 것으로 판정되어, 겔 발효균의 모체인 tea fungus에서 G. hanenii TF-2를 분리, 여기에 UV를 조사하여 TL-2를 분리한 후, 감귤배지에서 반복배양하여 citrate내성균인 G. hansenii TL-2C를 분리하였다. 감귤농축액 100배 희석액에 initial sucrose 함량 10%(w/v), ethanol 1%(v/v) 을 첨가한 배양액에 종균을 5%(w/v)접종하였다. 대형 4각의 FRP 용기에 뚜껑을 덮고 과즙의 높이를 26 mm로 충진하였으며, $30^{\circ}C$ 배양실에서 14일간 정치배양한 후 세로 360 mm,가로 650 mm, 두께 25 mm 이상의 대형 겔을 지속적으로 생산할 수 있었다.

Keywords

References

  1. Matthysee AG, Holmes KV, Gurlits HG. 1981. Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cell. J Bacteriol 145: 583-595
  2. Robert EC, Steven MA. 1991. Biogenesis of bacterial cellulose. Microbiol 17: 435-447
  3. Ko JY, Shin KS, Yoon BD, Choi WY. 2000. Isolation and identification of Acetobacter xylinum GS11 producing cellulose. Korean J Appl Microbiol Biotechnol 28: 139-146
  4. Cha YJ, Park KJ, Kim DK, Chun HS, Lee BK, Kim KH, Lee SK, Kim SJ. 1994. Isolation and characterization of cellulose producing Acetobacter xylinum KI strain. Korean J Appl Microbiol Biotechnol 22: 571-576
  5. Ko JY, Shin KS, Lee JS, Choi WY. 2002. Production of bacterial cellulose by Acetobacter xylinum GS11. Korean J Appl Microbiol Biotechnol 30: 57-62
  6. Lee HC, Zhao X. 1996. The optimal medium composition for the production of microbial cellulose by Acetobacter xylinum. Korean J Biotechnol Bioeng 11: 550-556
  7. Benziman M, Haigler CH, Brown Jr RM, White AR, Cooper KM. 1980. Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci USA 77: 6678-6682 https://doi.org/10.1073/pnas.77.11.6678
  8. Chung Y, Shyu Y. 1999. The effect of pH, salt, heating and freezing on the physical properties of bacterial cellulose-nata. International J Food Sci Technol 34: 23-26 https://doi.org/10.1046/j.1365-2621.1999.00231.x
  9. Embuscado ME, Marks JS, BeMiler JN. 1994. Bacterial cellulose. II. Optimization of cellulose production by Acetobacter xylinum through response surface methodology. Food Hydrocoll 8: 419-430 https://doi.org/10.1016/S0268-005X(09)80085-4
  10. Vandamme EJ, Baets SD, Vanbaelen A, Joris K, Wulf PD. 1998. Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59: 93-99 https://doi.org/10.1016/S0141-3910(97)00185-7
  11. Cho SH, Lee JY, Choi YS, Choi KH. 2002. Dietary effects of fiber produced from Gluconoacetobacter hansenii on digestive tract and lipid metabolism in rats. J Korean Soc Food Sci Nutr 31: 802-807 https://doi.org/10.3746/jkfn.2002.31.5.802
  12. Sutherlan IW. 1998. Novel and established applications of microbial polysaccharides. Tibtecg 16: 41-46 https://doi.org/10.1016/S0167-7799(97)01139-6
  13. Chung BW, Kim CY, Kang SK, Park BN. 1998. Characteristics of Korean traditional paper containing bacterial cellulose. The Research of Industrial Technology Institute, Chonbuk National University 29: 47-51
  14. Klemm D, Schumann D, Udhardt U, Marsch S. 2001. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 26: 1561-1603 https://doi.org/10.1016/S0079-6700(01)00021-1
  15. Brown AJ. 1886. An acetic ferment which forms cellulose. J Chem Soc 49: 432-439 https://doi.org/10.1039/ct8864900432
  16. Bae SO, Sugano Y, Ohi K, Shoda M. 2004. Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Apple Microbiol Biotechnol 65: 315- 322 https://doi.org/10.1007/s00253-004-1593-7
  17. Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S. 2002. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29: 189-195 https://doi.org/10.1038/sj.jim.7000303
  18. Greenwalt CJ, Ledford RA, Steinkraus KH. 1998. Determination and charaterization of the antimicrobial activity of the fermented tea kombucha. Lebensm-Wiss u-Technol 31: 291-296 https://doi.org/10.1006/fstl.1997.0354
  19. Teoh AL, Heard C, Cox J. 2004. Yeast ecology of kombucha fermentation. Int J Food Microbiol 95: 119-126 https://doi.org/10.1016/j.ijfoodmicro.2003.12.020
  20. Pandey LK, Saxena C, Dubey V. 2004. Studies on pervaporative characteristics of bacterial cellulose membrane. Sep Pur Technol 42: 213-218 https://doi.org/10.1016/j.seppur.2004.07.014
  21. Malbasa RV, Loncar ES, Kolarov LJ. 2001. Sucrose and inulin balance during tea fungus fermentation. Roum Biotechnol Lett 7: 573-576
  22. Nakagaito AN, Iwamoto S, Yano H. 2005. Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80: 93-97 https://doi.org/10.1007/s00339-004-2932-3
  23. Sony corp. 1994. Acoustic Diaphragm and its production. Japan Patent 1993082107
  24. Agency of Ind Science & Technol, Ajinomoto coinc, Sony corp. 1987. Bacterial cellulose-containing molding material having high mechanical strength. Japan Patent 1986085021
  25. Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moresch JC, Gallotti BJ. 1990. Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24: 253-264 https://doi.org/10.1007/BF02920250
  26. Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P. 2006. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27: 2141-2149 https://doi.org/10.1016/j.biomaterials.2005.10.026
  27. TED Case Studies. 2002. Nata de coco boom and the Philippines. BPI report. Philippines
  28. Pszezola DE. 1997. High technology taking ingredients to a new evel. Food Technol 51: 79-80
  29. Choi MA, Choi KH, Kim JO. 1996. Microflora occurring in the fermentation by tea fungus. Korean J Life Science 6: 56-65
  30. Choi MA, Kim JO, Choi KH. 1996. Effects of saccharides and incubation temperature on pH and total acidity of fermented black tea with tea fungus. Korean J Food Sci Technol 28: 405-410
  31. Lee SP, Kim CS. 2000. Characterization of kombucha beverages fermented with various teas and tea fungus. Korean J Food Sci Nutr 5: 165-169
  32. Lee OS, Jang SY, Jeong YJ. 2002. Culture conditions for the production of bacterial cellulose with Gluconacetobacter persimmonus KJ145. J Korean Soc Food Sci Nutr 31: 572-577 https://doi.org/10.3746/jkfn.2002.31.4.572
  33. Kojima Y, Seto A, Tonouchi N, Tauchida T, Yoshinaga F. 1997. High rate production of bacterial cellulose in static culture strain. Biosci Biotech Biochem 61: 1585-1586 https://doi.org/10.1271/bbb.61.1585
  34. Ishikawa A, Matsuoka M, Tsuchida T, Yoshinaga F. 1995. Increase in cellulose production by sulfaguanidine-resistant mutants derived from Acetobacter xylinum subsp. sucrofermentans. Biosci Biotech Biochem 59: 2259-2262 https://doi.org/10.1271/bbb.59.2259
  35. Yoshinaga F, Tonouchi N, Watanabe K. 1997. Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotech Biochem 61: 219-224 https://doi.org/10.1271/bbb.61.219
  36. Toda K, Asakura T, Fukaya M, Entani E, Kawamura Y. 1997. Cellulose production by acetic acid-resistant Acetobacter xylinum. J Ferment Bioeng 84: 228-231 https://doi.org/10.1016/S0922-338X(97)82059-4
  37. Park SH, Yang YK, Hang W, Lee CS, Pyun YR. 1997. Microbial cellulose fermentation by Acetobacter xylinum BRC5. Kor J Appl Microbiol Biotechnol 25: 598-605
  38. Park ST, Song TS, Kim YM. 1999. Effect of gluconic acid on the production of cellulose in Acetobacter xylinum BRC5. Korean J Microbiol Biotechnol 9: 683-686
  39. Ko JY, Shin KS, Yoon BD, Choi WY. 2000. Isolation and identification of Acetobacter xylinum CS11 producing cellulose. Kor J Appl Microbiol Biotechnol 28: 139-146
  40. Jang SY, Jeong YJ. 2005. Effect of lactate and corn steep liquor on the production of bacterial cellulose by Gluconacetobacter persimmonis $KJ145^T$. Food Sci Biotechnol 14: 561-565
  41. 통계청. 2005. 감귤/시도별 생산량 통계자료
  42. Chung SK, Kim SH, Choi YH, Song EY, Kim SH. 2000. Status of citrus fruit production and view of utilization in Cheju. Food Industry and Nutrition 5: 42-52
  43. Lee Y, Howard LR, Villalon B. 1995. Flavonoids and antioxidant activity of fresh peppers (Capsicum annuaum) cultivars. J Food Sci 60: 473-476 https://doi.org/10.1111/j.1365-2621.1995.tb09806.x
  44. Kana I, Tojiro T, Yoko T, Nobuji N, Junji T. 1995. Antioxidative activity of quercetin and quercetin monoglucosides in solution and phospholipid bilayers. Bioch Biophy Acta 1234: 99-104 https://doi.org/10.1016/0005-2736(94)00262-N
  45. Marie HS, Jole L, Marie C, Canivenc L, Patrick R, Marc S. 1995. Heterogenous effects of natural flavonoids on monoxygenase activites in human and rat liver microsomes. Toxicol Appl Pharmacol 130: 73-78 https://doi.org/10.1006/taap.1995.1010
  46. Son HS, Kim HS, Kwon TB, Ju JS. 1992. Isolation purification and hypotensive effects of bioflavonoids in citrus sinensis. J Korean Soc Food Nutr 21: 136-142
  47. Bok SH, Lee SH, Park YB, Bae KH, Son KH, Jeong TS, Choi MS. 1999. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl CoA reductase and acyl CoA:cholesterol transferase are lower in rat fed citrus peel extract or a mixture of citrus bioflavonoids. J Nutr 129: 1182-1185
  48. Park GS, An SH, Choi KH, Jeong JS, Park CS, Choi MA. 2000. Preparation of the functional beverages by fermentation and its sensory characteristics. Korean J Soc Food Sci 16: 663-669
  49. Koh JB. 2000. Effect of tea fungus / kombucha beverage on serum and liver lipids metabolism in rats. Korean J Nutrition 33: 497-501
  50. Koh JB, Choi MA. 1999. Effect of tea fungus / kombucha beverage on lipid metabolism in streptozotocin-induced diabetic male rats. J Korean Soc Food Sci Nutr 28: 613-618
  51. Yang JO, Yoo CJ, Kim JO, Che ME. 1999. Utilization fermented tea-fungus beverage for the sports drink. Sociol Sport J 38: 277-293
  52. Yang JO, Kim JO, Choi MA. 1997. The effects of consumption of tea fungus drink on the human blood composition. Sociol Sport J 36: 1234-1242
  53. Choi KH, Jeong JS, Moon CH, Kim ML. 2004. Optimization of culture condition of Gluconacetobacter hansenii TF-2 for cellulose gel fermentation. J Korean Soc Food Sci Nutr 33: 176-181 https://doi.org/10.3746/jkfn.2004.33.1.176
  54. Choi KH, Jeong JS, Moon CH, Kim ML. 2004. Effect of carbon source supplement on the gel production from citrus juice by Gluconacetobacter hansenii TL-2C. J Korean Soc Food Sci Nutr 33: 170-175 https://doi.org/10.3746/jkfn.2004.33.1.170
  55. Park EJ. 2002. Isolation of pellicle producing bacterium in fermentation system by tea fungus and establishment of the optimum medium composition for gel production. MS Thesis. Catholic University of Daegu
  56. AOAC. 1980. Official Methods of Analysis. 13th ed. Association of Official Analytical Chemists, Washington DC. p 180
  57. Kim ML, Choi KH. 2005. Sensory characteristics of citrus vinegar fermented by Gluconacetobacter hansenii CV1. Korean J Food & Cookery Science 21: 243-249
  58. Naritomi T, Kouda T, Yano H, Uoshinaga F. 1998. Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Fermen Bioeng 85: 598-602 https://doi.org/10.1016/S0922-338X(98)80012-3
  59. Lee OS, Jang SY, Jeong YJ. 2003. Effect of ethanol on the production of cellulose and acetic acid by Gluconacetobacter persimmonensis KJ145. J Korean Soc Food Sci Nutr 32: 181-184 https://doi.org/10.3746/jkfn.2003.32.2.181
  60. Son HJ, Lee OM, Kim GK, Park YK, Lee SJ. 2000. Characteristics of cellulose production by Acetobacter sp. A9 in static culture. Korean J Biotechnol Bioeng 15: 573-577
  61. Krystynowicz A, Czaja W, Wiktorowska-Jezieierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S. 2002. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29: 189-195 https://doi.org/10.1038/sj.jim.7000303
  62. Jia SR, Ou HY, Chen GB, Choi DB, Cho KA, Mitsuyasu O, Cha WS. 2004. Cellulose production from Gluconobacter oxydans TQ-B2. Biotechnol Bioprocess Engineering 9: 166-170 https://doi.org/10.1007/BF02942287
  63. Kim KH. 2002. Pellicle properties biosynthesized tea fungus fermentation system. PhD Dissertation. Catholic University of Daegu