Monte Carlo Simulation of the Molecular Properties of Poly(vinyl chloride) and Poly(vinyl alcohol) Melts

  • Moon, Sung-Doo (Department of Chemistry, Pukyong University) ;
  • Kang, Young-Soo (Department of Chemistry, Pukyong University) ;
  • Lee, Dong-J. (Department of Chemistry, Pukyong University)
  • Published : 2007.10.31

Abstract

NPT Monte Carlo simulations were performed to calculate the molecular properties of syndiotactic poly(vinyl chloride) (PVC) and syndiotactic poly(vinyl alcohol) (PVA) melts using the configurational bias Monte Carlo move, concerted rotation, reptation, and volume fluctuation. The density, mean square backbone end-to-end distance, mean square radius of gyration, fractional free-volume distribution, distribution of torsional angles, small molecule solubility constant, and radial distribution function of PVC at 0.1 MPa and above the glass transition temperature were calculated/measured, and those of PVA were calculated. The calculated results were compared with the corresponding experimental data and discussed. The calculated densities of PVC and PVA were smaller than the experimental values, probably due to the very low molecular weight of the model polymer used in the simulation. The fractional free-volume distribution and radial distribution function for PVC and PVA were nearly independent of temperature.

Keywords

References

  1. G. Tanaka and W. L. Mattice, Macromolecules, 28, 1049 (1995)
  2. G. D. Smith, R. L. Jaffe, and D. Y. Yoon, Macromolecules, 26, 298 (1993)
  3. I. Neelov, S. Niemela, and F. Sundholm, J. Non-Cryst. Solids, 235-237,340 (1998)
  4. S. Neyertz, D. Brown, and 1. H. R. Clarke, J. Chem. Phys., 105, 2076 (1996)
  5. N. F. A. van der Vegt, J. Membr. Sci., 205, 125 (2002)
  6. G. E. Karlsson, T. S. Johansson, U. W. Gedde, and M. S. Hedenqvist, J. Macromol. Sci-Phys., B41, 185 (2002)
  7. A. De La Rosa, L. Heux, J. Y. Cavaille, and K. Mazeau, Polymer, 43, 5665 (2002)
  8. F. Muller-Plathe, J. Chem. Phys., 108, 8252 (1998)
  9. F. Muller-Plathe, J. Membr. Sci., 141, 147 (1998)
  10. Y. Tarnai and H. Tanaka, Chem. Phys. Lett., 285, 127 (1998)
  11. D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, and M. Bohning, Macromol. Theory Simul., 9, 293(2000) https://doi.org/10.1002/1521-3919(20000701)9:6<293::AID-MATS293>3.0.CO;2-1
  12. G. E. Karlsson, U. W. Gedde, and M. S. Hedenqvist, Polymer, 45, 3893 (2004) https://doi.org/10.1016/j.polymer.2003.12.082
  13. S. S. Jawalkar, S. G. Adoor, M. Sairam, M. N. Nadagouda, and T. M. Aminabhavi, J. Phys. Chem. B, 109, 15611 (2005) https://doi.org/10.1021/jp051206v
  14. D. Frenkel, G. C. A. M. Mooij, and B. Smit, J. Phys.: Condensed Matter, 4, 3053(1992)
  15. M. Laso, J. J. de Pablo, and U. W. Suter, J. Chem. Phys., 97, 2817 (1992)
  16. L. R. Dodd, T. D. Boone, and D. N. Theodorou, Mol. Phys., 78, 961(1993)
  17. M. G. Wu and M. W. Deem, Mol. Phys., 97, 559 (1999)
  18. V. G. Mavrantzas, T. D. Boone, E. Zervopoulou, and D. N. Theodorou, Macromolecules, 32, 5072 (1999)
  19. P. V. K. Pant and D. N. Theodorou, Macromolecules, 28, 7224 (1995)
  20. N. C. Karayiannis, V. G. Mavrantzas, and D. N. Theodorou, Phys. Rev. Lett., 88, 105503 (2002)
  21. N. C. Karayiannis, A. E. Giannousaki, V. G. Mavrantzas, and D. N. Theodorou, J. Chem. Phys., 117, 5465 (2002)
  22. R. Faller, F. Muller-Plathe, M. Doxastakis, and D. Theodorou, Macromolecules, 34, 1436 (2001)
  23. M. Doxastakis, V. G. Mavrantzas, and D. N. Theodorou, J. Chem. Phys., 115, 11339 (2001) https://doi.org/10.1063/1.1381575
  24. P. Gestoso, E. Nicol, M. Doxastakis, and D. N. Theodorou, Macromolecules, 36, 6925 (2003) https://doi.org/10.1021/ma034033l
  25. G. D. Smith, P. J. Ludovice, R. L. Jaffe, and D. Y. Yoon, J. Phys. Chem., 99, 164 (1995)
  26. F. Muller-Plathe and W. F. van Gunsteren, Polymer, 38, 2259 (1997)
  27. E. Zervopoulou, V. G. Mavrantzas, and D. N. Theodorou, J. Chem. Phys., 115, 2860 (2001) https://doi.org/10.1063/1.1381575
  28. B. J. C. Cabral, J. L. Rivail, and B. Bigot, J. Chem. Phys., 86, 1467 (1987)
  29. M. G. Martin and J. I. Siepmann, J. Phys. Chem. B, 103, 4508 (1999) https://doi.org/10.1021/jp9845219
  30. M. P. Allen and D. J. Tildesley, in Computer Simulation of Liquids, Clarendon, Oxford, 1987
  31. P. Zoller and D. J. Walsh, in Standard Pressure-Volume-Temperature Data for Polymers, Technomic, Lancaster, 1995
  32. S. Misra and W. L. Mattice, Macromolecules, 26, 7274 (1993)
  33. N. F. A. van der Vegt, W. J. Briels, M. Wessling, and H. Strathmann, J. Chem. Phys., 105, 8849 (1996)