Preparation and Properties of PEG Modified PNVP Hydrogel

  • Son, Young-Kyo (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Ji-Heung (Polymer Technology Institute, Sungkyunkwan University) ;
  • Jeon, Young-Sil (Polymer Technology Institute, Sungkyunkwan University) ;
  • Chung, Dong-June (Department of Polymer Science and Engineering, Sungkyunkwan University)
  • Published : 2007.10.31

Abstract

Polymer hydrogel has attracted considerable interest as a soft material which is finding expanding applications in pharmaceutics and various biomedical fields. In this work, modified PNVP hydrogels were synthesized by crosslinking polymerization of NVP monomer in the presence of PEG macromer with a methoxy end. The effect of the tethered PEG chain on the properties of the hydrogel was investigated in terms of its swelling capacity, compression gel strength, and the morphology of the resulting hydrogels. These PEG-modified PNVP hydrogels possessed good biocompatibility and a decreased protein (fibrinogen) adsorption, thereby indicating their potential as novel drug delivery matrices and scaffold for tissue engineering.

Keywords

References

  1. S. Dumitriu, Ed., Polymeric Biomaterials, 2nd Ed., Marcel Dekker, New York, 2002
  2. S. Abraham, S. Brahim, K. Ishihara, and A. Guiseppi-Elie, Biomaterials, 26, 4767 (2005) https://doi.org/10.1016/j.biomaterials.2005.01.031
  3. T. D. Dziubla and A. M. Lowman, J. Biomed. Mater. Res., 68A, 603 (2004) https://doi.org/10.1002/jbm.a.20023
  4. R. P. Lanza, R. Langer, and J. Vacanti, Eds., Principle of Tissue Engineering, 2nd Ed., Academic Press, San Diego, 2000
  5. J. Cha, W. B. Lee, and C. R. Park, Macromol. Res., 14, 573 (2006) https://doi.org/10.1007/BF03218726
  6. Y. K. Son, Y. P. Jung, and J.-H. Kim, Macromol. Res., 14, 394 (2006) https://doi.org/10.1007/BF03219100
  7. D. I. Ha, S. B. Lee, and M. S. Chong, Macromol. Res., 14, 87 (2006) https://doi.org/10.1007/BF03219073
  8. T. Caykara and O. Kantoglu, Polym. Adv. Technol., 15, 134 (2004) https://doi.org/10.1002/pat.423
  9. L. E. Smith, S. Rimmer, and S. MacNeil, Biomaterials, 27, 2806 (2006) https://doi.org/10.1016/j.biomaterials.2005.12.018
  10. N. A. Peppas, Ed., Hydrogels in Medicine and Pharmacy, CRC Press, Boca Raton, FL, 1986
  11. D. M. Devine and C. L. Higginbotham, Eur. Polym. J, 41, 1272 (2005) https://doi.org/10.1016/j.eurpolymj.2004.12.022
  12. Z. Ajji, I. Othman, and J. M. Rosiak, Nucl. Instrum. Meth. B, 229, 375 (2005) https://doi.org/10.1016/j.nimb.2004.12.135
  13. Y. Jiao, Z. Liu, S. Ding, L. Li, and C. Zhou, J. Polym. Sci., 101, 1515 (2006)
  14. N. P. Desai and J. A. Hubbell, J. Biomed. Mater. Res., 25, 829 (1991) https://doi.org/10.1002/jbm.820250806
  15. J. A. Hubbell, Cur. Opin. Biotech., 10, 123 (1999)
  16. M. J. Harris, Poly(ethylene glycol) Biotechnical and Biomedical Applications, Prenum Press, New York, 1992
  17. B. D. Ratner, in Biocompatibility of Clinical Implant Materials, D. F. Williams, Ed., CRC Press, Cleveland, Ohio, 1981, Ch 7
  18. Y. P. Jung, J. H. Kim, D. S. Lee, and Y. H. Kim, J. Polym. Sci., 104, 2484 (2007)
  19. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk, Anal. Biochem., 150: 76, (1985)
  20. M. J. Park, M. J. Kwon, S. H. Lee, and D. S. Kim, J. Kor. Oph. Opt. Soc., 9, 53 (2004)