Synthesis and Characterization of Low Molecular Weight Poly(methyl acrylate)-b-Polystyrene by a Combination of ATRP and Click Coupling Method

  • Hasneen, Aleya (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Su-Jeong (Department of Polymer Science and Engineering, Pusan National University) ;
  • Paik, Hyun-Jong (Department of Polymer Science and Engineering, Pusan National University)
  • Published : 2007.10.31

Abstract

The combination of atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of well-defined block copolymers. Bromo terminated poly(methyl acrylate) (pMA-Br) was prepared by an ATRP initiator, ethyl-2-bromoisobutyrate (EBiB). Subsequently, the bromine chain end of pMA-Br was converted to an azide group by simple nucleophilic substitution reaction. ${\alpha}-Alkyn-{\omega}-bromo-functionalized$ polystyrene was also synthesized by ATRP using the alkyn-functionalized initiator, propargyl-2-bromoisobutyrate (PgBiB). In both cases, the conversion was limited to a low level to ensure a high degree of chain end functionality. Then the coupling reaction between the azide end group in $pMA-N_3$ and alkyn-functionalized PgBiB-pSt was performed by Cu(I)catalysis. This coupling reaction was monitored by gel permeation chromatography (GPC). The synthesized block copolymer was characterized by FT-IR, $^1H-NMR$ spectroscopy and $^1H-^1H$ COSY correlation spectroscopy.

Keywords

References

  1. N. Hadjichristidis, S. Pispas, and G. Floudas, Block Copolymers, Wiley, Hoboken, NJ, 2003
  2. K. Matyjaszewski and T. P. Davis, Eds., Handbook of Radical Polymerization, Wiley, Hoboken, NJ, 2002
  3. J. S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 117, 5614 (1995)
  4. K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001) https://doi.org/10.1021/cr990410+
  5. M. Kamigatio, T. Ando, and M. Sawamoto, Chem. Rev., 101, 3689 (2001) https://doi.org/10.1021/cr990410+
  6. Y-J. Kwark, J. Kim, and B. M. Novak, Macromol. Res., 15, 31 (2007) https://doi.org/10.1007/BF03218749
  7. H. Y Cho, B. H. Han, I. Kim, and H.-j. Paik, Macromol. Res., 14, 539 (2006) https://doi.org/10.1007/BF03218721
  8. S. C. Hong, W. S. Lyoo, K. E. Shin, and S. K. Noh, Macromol. Res., 13, 391 (2005) https://doi.org/10.1007/BF03218471
  9. M. Kang and B. Moon, Macromol. Res., 13, 229 (2005) https://doi.org/10.1007/BF03219057
  10. Y. W. Lee, S. M. Kang, K. R. Woon, Y. S. Chi, I. S. Choi, S. P. Hong, B. C. Yu, H.-j. Paik, and W. S. Yun, Macromol. Res., 13, 356 (2005) https://doi.org/10.1007/BF03218466
  11. V. Coessens, T. Pintauer, and K. Matyjaszewski, Prog. Polym. Sci., 26, 337 (2001) https://doi.org/10.1016/S0079-6700(01)00003-X
  12. V. Coessens and K. Matyjaszewski, J. Macromol. Sci. Pure Appl. Chem. A, 36, 667 (1999)
  13. S. G. Gaynor, Y. Nakagawa, and K. Matyjaszewski, Macromol. Rapid Comm., 18, 1057 (1997) https://doi.org/10.1002/marc.1997.030181202
  14. R. Huisgen, Angew. Chem. Int. Ed., 2, 565 (1963)
  15. V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem. Int. Ed., 41, 2596 (2002)
  16. C. W. Tomoe, C. Christensen, and M. Meldal, J. Org. Chem., 67, 3057 (2002)
  17. H. Li, F. Cheng, A, M. Duft, and A. Adronov, J. Am. Chem. Soc., 127, 14518 (2005) https://doi.org/10.1021/ja054958b
  18. B. S. Sumerlin, N. V. Tsarevsky, G. Louche, R. Y. Lee, and K. Matyjaszewski, Macromolecules, 38, 7540 (2005) https://doi.org/10.1021/ma0511245
  19. B. S. Sumerlin, N. V. Tsarevsky, H. Gao, P. Golas, G. Louche, R. Y. Lee, and K. Matyjaszewski, ACS Sym. Ser., 944, 140 (2006) https://doi.org/10.1021/bk-2006-0944.ch011
  20. H. Gao, G. Louche, B. S. Sumerlin, N. Jahed, P. Golas, and K. Matyjaszewski, Macromolecules, 38, 8979 (2005) https://doi.org/10.1021/ma051566g
  21. P. Wu, A. K. Feldman, A. Nugent, K. Hawker, C. J. Scheel, A. Voit, B. Pyun, J. Frechet, K. B. Sharpless, and V. V. Fokin, Angew. Chem. Int. Ed., 43, 3928 (2004) https://doi.org/10.1002/anie.200454078
  22. M. J. Joralemon, R. K. O'Reilly, J. B. Matson, A. K. Nugent, C. J. Hawker, and K. L. Wooley, Macromolecules, 38, 5436 (2005) https://doi.org/10.1021/ma050302r
  23. E. Femandez-Megia, J. Correa, I. Rodriguez-Meizoso, and R. Riguera, Macromolecules, 39, 2113 (2006) https://doi.org/10.1021/ma052448w
  24. M. J. Joralemon, R. K. O'Reilly, C. J. Hawker, and K. L. Wooley, J. Am. Chem. Soc., 127, 16892 (2005) https://doi.org/10.1021/ja053919x
  25. H. Gao and K. Matyjaszewski, Macromolecules, 39, 4960 (2006) https://doi.org/10.1021/ma060926c
  26. B. A. Laurent and S. M. Grayson, J. Am.Chem. Soc., 128, 4238 (2006) https://doi.org/10.1021/ja0585836
  27. J. A. Opsteen and J. C. M. van Hest, Chem. Comm., 57, (2005)
  28. H. Durmaz, B. Colakoglu, U. Tanka, and G. Hizal, J. Polym. Sci.; Part A: Polym. Chem., 44, 1667 (2006) https://doi.org/10.1002/pola.21275
  29. D. Quemener, T. P. Davis, C. Barner-Kowollik, and M. H. Stenzel, Chem. Comm., 5051 (2006)
  30. K. Matyjaszewski, T. E. Patten, and J. Xia, J. Am. Chem. Soc., 119, 674 (1997)
  31. A. E. luedtke and J. W. Timberlake, J. Org. Chem., 50, 268 (1985)
  32. N. V. Tsarevsky, B. S. Sumerlin, and K. Matyjaszewski, Macromolecules, 38, 3558 (2005) https://doi.org/10.1021/ma050370d
  33. H.-j. Paik, S. Gaynor, and K. Matyjaszewski, Macromol. Rapid Comm., 19, 47 (1998)
  34. J. F. Lutz, H. G. Boerner, and K. Weichenhan, Macromol. Rapid Comm., 26, 514 (2005) https://doi.org/10.1002/marc.200500002
  35. J. F. Lutz, H. G. Boerner, and K. Weichenhan, Macromolecules, 39, 6376 (2006) https://doi.org/10.1021/ma061557n
  36. J. F. Lutz and K. Matyjaszewski, Macromol. Chem. Phys., 203, 1385 (2002)
  37. J. F. Lutz and K. Matyjaszewski, J. Polym. Sci.; Part A: Polym. Chem., 43, 897 (2005) https://doi.org/10.1002/pola.20548
  38. P. V. Andrew and S. S Brent, Macromolecules, 39, 5286 (2006) https://doi.org/10.1021/ma0610461