응력연화거동을 고려한 고무 재료의 변형률 에너지 함수 결정

Determination of Strain Energy Function of Rubber Materials Considering Stress Softening Behavior

  • 김완수 (충남대학교 기계공학과 대학원) ;
  • 홍성인 (충남대학교 기계공학과)
  • Kim, W.S. (Department of Mechanical Engineering, Chungnam National University Graduation School) ;
  • Hong, S.I. (Department of Mechanical Engineering, Chungnam National University)
  • 발행 : 2007.09.29

초록

카본블랙이나 실리카 등으로 보강된 고무 가황체는 순수한 초기상태에서 하중(부하)를 가하고 제거하는 반복과정에서 응력은 점점 연화되어 초기상태에서 얻어진 응력보다 작게 나타난다. 이러한 응력 연화 현상을 Mullins 효과라고 부른다. 이러한 응력 연화 거동을 이론적으로 표현하기 위하여 Ogden-Roxburgh 등이 손상 파라미터를 이용하여 제안한 pseudo-elastic 개념을 적용하여 보강제가 함유된 고무 가황체의 변형률 에너지 함수를 구하였다. 카본블랙으로 보강된 NR 가황체를 이용하여 준정적 반복 부하 시험을 실시하였으며, pseudo-elastic 모델에서의 손상 파라미터가 제하 및 재 부하 시 응력-변형률 곡선에 어떠한 영향을 주는가와 더불어 손상 파라미터의 두 가지 변수인 r과 m의 물리적 의미를 파악하였다. 또한 보강제 함량을 달리하여 제작한 고무 가황체의 응력연화 변형률 에너지 함수를 결정하고 비교하였다.

When the rubber vulcanizates reinforced with carbon black or silica are subjected to cyclic loading from its virgin state, the stress required on reloading is less than that on the initial loading. This stress softening phenomenon is referred to as the Mullins effect. The strain energy function of rubber vulcanizates was investigated using theory of pseudo-elasticity incorporated damage parameter that Ogden and Roxburgh have proposed to describe the damage-induced stress softening effect in rubber-like solids. The quasi-static cyclic loading test was performed using the NR-SBR vulcanizates reinforced with carbon black, and then the effect of a damage parameter to stress-strain curve in reloading and subsequent reloading paths was studied. The strain energy function of the rubber vulcanizates with a different filler content was also evaluated.

키워드

참고문헌

  1. W.D. Kim, C.S. Woo, K.S. Kim, and J.D. Kwon, 'An experimental study on the dynamic characteristics of rubber isolator', Elastomer, 37, 183 (2002)
  2. L. Mullins, 'Softening of rubber by deformation', Rubber Chem. Tech., 42, 339 (1969) https://doi.org/10.5254/1.3539210
  3. M.A. Johnson and M.F. Beatty, 'The Mullins effect in uniaxial extension and its influence on the transverse vibration of a rubber string', Continuum Mech. Thermodyn. 5, 83 (1993) https://doi.org/10.1007/BF01141446
  4. C. Miehe, 'Discontinuous and continuous damage evloution in Ogden type large strain elastic materials', Eur. J. Mech. A Solids, 14, 69 (1995)
  5. G. Chagnon, E. Verron, L. Gornet, G. Marckmann, and P. Charrier, 'On the relevance of continuum damdage mechanics as applied to the Mullins effect in elastomers', J. Mech. Phys. Soilds, 52, 1627 (2004) https://doi.org/10.1016/j.jmps.2003.12.006
  6. R.W. Ogden and D.G. Roxburgh, 'A pseudo-elastic model for the Mullins effect in filled rubber', Proc. R. Soc. Lond., 455, 2861 (1999)
  7. E.M. Arruda and M.C. Boyce, 'A three dimensional constitutive model for the large stretch behavior of rubber elastic materials', J. Mech. Phys. Solids, 41, 389 (1993) https://doi.org/10.1016/0022-5096(93)90013-6
  8. M. Mooney, 'A theory of large elastic deformation', J. Appl. Phys., 11, 582 (1940) https://doi.org/10.1063/1.1712836
  9. R. Ogden, 'Recent advances in the phenomenological theory of rubber elasticity', Rubber Chem. Tech., 59, 361 (1984)
  10. W.D. Kim, W.S. Kim, D.J. Kim, C.S. Woo, and H.J. Lee, 'Mechanical testing and nonlinear material properties for finite element analysis of rubber components', Trans. of the KSME, 28, 848 (2004)
  11. S. Govindjee and J. Simo, 'A micromechanically based continuum damage model for carbon blackfilled rubber incoporating Mullins' effect', J. Mech. Phys. Solids, 39, 87 (1991) https://doi.org/10.1016/0022-5096(91)90032-J