Development of Hepatitis C Virus (HCV) Genome-Targeting Hammerhead Ribozyme Which Activity Can Be Allosterically Regulated by HCV NS5B RNA Replicase

C형 간염바이러스(HCV)의 NS5B RNA Replicase에 의해 그 활성이 조절되는 HCV지놈 표적 Hammerhead 리보자임 개발

  • Lee, Chang-Ho (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Seong-Wook (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University)
  • 이창호 (단국대학교 자연과학부 분자생물학전공 나노센서 바이오텍연구소) ;
  • 이성욱 (단국대학교 자연과학부 분자생물학전공 나노센서 바이오텍연구소)
  • Published : 2007.09.30

Abstract

For the development of basic genetic materials for specific and effective therapeutic approach to suppress multiplication of hepatitis C virus (HCV), HCV internal ribosome entry site (IRES)-targeting hammerhead ribozyme which activity is allosterically regulated by HCV regulatory protein, NS5B RNA replicase, was developed. The ribozyme targeted most effectively to +382 nucleotide (nt) site of HCV IRES RNA. The allosteric ribozyme was designed to be composed of sequence of RNA aptamer to HCV NS5B, communication module sequence which can transfer structural transition for inducing ribozyme activity upon binding NS5B to the aptamer, and sequence of ribozyme targeting +382 nt of HCV IRES. Noticeably, we employed in vitro selection technology to identify the most appropriate communication module sequence which can induce ribozyme activity depending on the US5B protein. We demonstrated that the ribozyme was nonfunctional either in the absence of any proteins or in the presence of control bovine serum albumin. In sharp contrast, the allosteric ribozyme can induce activity of cleavage reaction with HCV IRES RNA in the presence of the HCV NS5B protein. This allosteric ribozyme can be used as lead compound for specific and effective anti-HCV agent, tool for highthroughput screening to isolate lead chemicals for HCV therapeutics, and ligand for biosensor system for HCV diagnosis.

C형 간염바이러스(hepatitis C virus; HCV)증식을 효과적이며 특이적으로 제어할 수 있는 유전산물을 개발하기 위하여 HCV 중식조절이자인 NS5B RNA replicase 존재에 의해 allosteric하게 그 활성 이 조절될 수 있는 HCV internal ribosome entry site (IRES) 표적 hammerhead 리보자임을 개발하였다. 우선 HCV IRES 염기서열 중+382 nucleotide(nt) 부위가 리보자임에 의해 가장 잘 인식되었음을 관찰하였다. 이러한 allosteric 리보자임은 NS5B RNA replicase와 특이적으로 결합하는 RNA aptamer 부위, aptamer와 NS5B와의 결합에 의해 리보자임 활성을 유도할 수 있도록 구조적 변이를 전달할 수 있는 communication module부위 및 HCV IRES의 +382 nt를 인지하는 hammerhead 리보자임 등으로 구성되도록 설계하였다. 특히 in vitro selection기법을 활용하여 NS5B 의존적으로 리보자임 활성을 증가시킬 수 있는 communication module 염기서열을 밝혀내었다. 이러한 리보자임은 단백질이 없거나 대조 단백질인 bovine serum albumin이 존재할 때에는 절단반응을 유도하지 못하였으나 HCV NS5B 단백질이 존재할 매에만 효과적으로 NS5B 농도 의존적으로 절단 반응을 유도할 수 있음을 관찰하였다. 이러한 allosteric 리보자임은 HCV중식의 효과적인 증식 억제 선도물질 뿐만 아니라 HCV 치료선도물질의 스크리닝용 도구 및 HCV 조절 인자를 탐색할 수 있는 HCV 진단용 리간드로서도 활용될 수 있을 것이다.

Keywords

References

  1. Ali, N. and A. Siddiqui. 1995. Interaction of polypyrimidine tractbinding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J. virol. 69, 6367-6375
  2. Anwar, A., N. Ali, R. Tanveer, and A. Siddiqui. 2000. Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. J. Biol. Chem. 275, 34231-34235 https://doi.org/10.1074/jbc.M006343200
  3. Araki, M., Y. Okuno, Y. Hara, and Y. Sugiura. 1998. Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 26, 3379-3384 https://doi.org/10.1093/nar/26.14.3379
  4. Biroccio, A.,J. Hamm, I. Incitti, R. De Francesco, and L. Tomei. 2002. Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J. virol. 76, 3688-3696 https://doi.org/10.1128/JVI.76.8.3688-3696.2002
  5. Breaker, R.R. 2002. Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31-39 https://doi.org/10.1016/S0958-1669(02)00281-1
  6. Cheng, J.C., M.E. Chang, and S.C. Chang. 1999. Specific interaction between the hepatitis C virus NS5B RNA polymerase and the 3' end of the virol RNA. J.Virol. 73, 7044-7049
  7. Chevalier, C., A. Saulnier, Y. Benureau, D. Flchet, D. Delgrange, F. Colbre-Garapin, C. Wychowski, and A. Martin. 2007. Inhibition of hepatitis C virus infection in cell culture by small interfering RNAs. Mol. Ther. 15, 1452-1462 https://doi.org/10.1038/sj.mt.6300186
  8. Choo, Q.L., G. Kuo, A.J. Weiner, L.R. Overby, D.W. Bradley, and M. Houghton. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B virol hepatitis genome. Science 244, 359-362 https://doi.org/10.1126/science.2523562
  9. Hahm, B., D.S. Han, S.H. Back, O.K. Song, M.J. Cho, C.J. Kim, K. Shimotohno, and S.K. Jang. 1995. NS3-4A of hepatitis C virus is a chymotrypsin-like protease. J. Virol. 69,2534-2539
  10. Hammann, C. and D.M. Lilley. 2002. Folding and activity of the hammerhead ribozyme. Chembiochem. 3, 690-700 https://doi.org/10.1002/1439-7633(20020802)3:8<690::AID-CBIC690>3.0.CO;2-C
  11. Hanecak, R., V. Brown-Driver, M.C. Fox, R.F. Azad, S. Furusako, C. Nozaki, C. Ford, H. Sasmor, and K.P. Anderson. 1996. Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J. Virol. 70, 5203-5212
  12. Hartig, J.S., S.H. Najafi-Shoushtari, I. Grune, A Yan, A.D. Ellington, and M. Famulok. 2002. Protein-dependent ribozyrnes report molecular interactions in real time. Nat. Biotechnol. 20, 717-722 https://doi.org/10.1038/nbt0702-717
  13. Hino, K., S. Sainokami, K. Shimoda, S. lino, Y. Wang, H. Okamoto, Y. Miyakawa, and M. Mayurni. 1994. Genotypes and titers of hepatitis C virus for predicting response to interferon in patients with chronic hepatitis C. J. Med. virol. 42, 299-305 https://doi.org/10.1002/jmv.1890420318
  14. Honda, M., M.R. Beard, L.H. Ping, and S.M. Lemon. 1999. A phylogenetically conserved stem-loop structure at the 5' border of the internal ribosome entry site of hepatitis C virus is required for cap-independent virol translation. J. virol. 73, 1165-1174
  15. Hwang, B., J.S. Cho, H.J. Yeo, J.H. Kim, K.M. Chung, K. Han, S.K. Jang, and S.W. Lee. 2004. Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10, 1277-1290 https://doi.org/10.1261/rna.7100904
  16. Johnson, R.B., X.L. Sun, M.A. Hockman, E.C. Villarreal, M. Wakulchik, and Q.M. Wang. 2000. Specificity and mechanism analysis of hepatitis C virus RNA-dependent RNA polymerase. Arch. Biochem. Biophys. 377, 129-134 https://doi.org/10.1006/abbi.2000.1749
  17. Jopling, C.L., M.K. Yi, A.M. Lancaster, S.M. Lemon, and P. Sarnow. 2005. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577-1581 https://doi.org/10.1126/science.1113329
  18. Kapadia, S.B., A. Brideau-Andersen, and F.V. Crusan. 2003. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl Acad. Sci. USA. 100, 2014-2018
  19. Kertsburg, A. and G.A. Soukup. 2002. A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res. 30, 4599-4606 https://doi.org/10.1093/nar/gkf596
  20. Kolykhalov, A.A., K. Mihalik, S.M. Feinstone, and C.M. Rice. 2000. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J virol. 74, 2046-2051 https://doi.org/10.1128/JVI.74.4.2046-2051.2000
  21. Krutzfeldt, J., N. Rajewsky, R. Braich, K.G. Rajeev, T. Tuschl, M. Manoharan, and M. Stoffel. 2005. Silencing ofmicroRNAs in vivo with 'antagomirs'. Nature 438, 685-689 https://doi.org/10.1038/nature04303
  22. Kuo, G., Q.L. Choo, H.J. Alter, G.L. Gitnick, A.G. Redeker, R.H. Purcell, T. Miyamura, J.L. Dienstag, M.J. Alter, and C.E. Stevens. 1989. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244, 362-364 https://doi.org/10.1126/science.2496467
  23. Lohmann, V., F. Komer, J.O. Koch, U. Herian, L. Theilmann, and R. Bartenschlager. 1999. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110-113 https://doi.org/10.1126/science.285.5424.110
  24. Macejak, D.G., K.L. Jensen, S.F. Jamison, K. Domenico, E.C. Roberts, N. Chaudhary, I. von Carlowitz, L. Bellon, MJ. Tong, A. Conrad, P.A. Pavco, and L.M. Blatt. 2000. Inhibition of hepatitis C virus (HCY)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31, 769-776 https://doi.org/10.1002/hep.510310331
  25. Pagliaro, L., A. Craxi, C. Cammaa, F. Tine, V. Di Marco, L. Iacono, and P. Almasio. 1994. Interferon-alpha for chronic hepatitis C: an analysis of pretreatment clinical predictors of response. Hepatology 19, 820-828
  26. Penchovsky, R. and R.R. Breaker. 2005. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat. Biotechnol. 23, 1424-1433 https://doi.org/10.1038/nbt1155
  27. Roth, A. and R.R. Breaker. 2004. Selection in vitro of allosteric ribozymes. Methods Mol. BioI. 252, 145-164
  28. Ryu, K.J., J.H. Kim, and S.W. Lee. 2003. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol. Ther. 7, 386-395 https://doi.org/10.1016/S1525-0016(02)00063-1
  29. Saito, I., T. Miyamura, A. Ohbayashi, H. Harada, T. Katayama, S. Kikuchi, Y. Watanabe, S. Koi, M. Onji, Y. Ohta, Q. Choo, M. Houghton, and G. Kuo. 1990. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc. Natl. Acad Sci. USA 87, 6547-6549
  30. Sakamoto, N., C.H. Wu, and G.Y. Wu. 1996. Intracellular cleavage of hepatitis C virus RNA and inhibition of virol protein translation by hammerhead ribozymes. J. Clin. Invest. 98, 2720-2728 https://doi.org/10.1172/JCI119097
  31. Tuerk, C. and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510 https://doi.org/10.1126/science.2200121
  32. Vaish, N.K., F. Dong, L. Andrews, R.E. Schweppe, N.G. Ahn, L. Blatt, and S.D. Seiwert. 2002. Monitoring post-translational modification of proteins with allosteric ribozymes. Nat. Biotechnol. 20, 810-815 https://doi.org/10.1038/nbt719
  33. Zivarts, M., Y. Liu, and R.R. Breaker. 2005. Engineered allosteric ribozymes that respond to specific divalent metal ions. Nucleic Acids Res. 33, 622-631 https://doi.org/10.1093/nar/gki182