Comparison of the Phylogenetic Diversity of Humus Forest Soil Bacterial Populations via Different Direct DNA Extyaction Methods

DNA 직접추출법에 따른 산림토양 부식층 내 세균군집의 계통학적 다양성 비교

  • Son, Hee-Seong (Institute of Microbial Ecology & Resources and Department of Microbiology, Mokwon University) ;
  • Han, Song-Ih (Institute of Microbial Ecology & Resources and Department of Microbiology, Mokwon University) ;
  • Whang, Kyung-Sook (Institute of Microbial Ecology & Resources and Department of Microbiology, Mokwon University)
  • 손희성 (목원대학교 미생물생태자원연구소, 목원대학교 생명산업학부) ;
  • 한송이 (목원대학교 미생물생태자원연구소, 목원대학교 생명산업학부) ;
  • 황경숙 (목원대학교 미생물생태자원연구소, 목원대학교 생명산업학부)
  • Published : 2007.09.30

Abstract

The principal objective of this study was to analyze 16S rDNA-ARDRA of the humus forest soil via an improved manual method and an ISOIL kit on the basis of the UPGMA clustering of the 16S rDNA combined profile, 44 ARDRA clusters of 76 clones via the ISOIL kit method and 45 ARDRA clusters of 136 clones via the improved manual method. On the basis of the 16S rDNA sequences, 44 clones from the ARDRA clusters by the ISOIL kit were classified into 3 phyla : ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria and Actinobacteria. Using the improved manual method, the specimens were classified into 6 phyla : the ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes and Gemmatomonadetes. As a result, the modified manual method indicated greater phylogenetic diversity than was detected by the ISOIL kit. Approximately 40 percent of the total clones were identified as ${\alpha}-Proteobacteria$ and 30 percent of the total clones were ${\gamma}-Proteobacteria$ and assigned to dominant phylogenetic groups using the ISOIL kit. Using the modified manual method, 41 percent of the total clones were identified as Acidobacteria and 28 percent of total clones were identified as ${\alpha}-proteobacteria$ and assigned to dominant phylogenetic groups.

개량된 manual법과 ISOIL kit를 이용하여 산림토양의 부식층 토양시료로부터 추출한 DNA를 대상으로 16S rDNA PCR 증폭산물을 cloning하고 구축된 clone에 대해 ARDRA cluster분식을 수행한 결과, 개량된 manual법에 의해 구축된 136 clones은 45개 ARDRA cluster로, ISOIL kit를 이용한 경우 충 76 clones은 44개 ARDRA cluster로 분류되었다. 각clone cluster로부터 대표 clone을 선발하여 16S rDNA염기서열을 결정한 결과, ISOIL kit의 경우 44개 대표clone은 ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria 및 Actinobacteria의 3개 phylum계통군이 확인되었으며, 개량된 manual법에 의한 45개 대표 clone은 ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes, 그리고 Gemmatomonadetes의 충 6개 phylum의 다양한 계통군이 검출되었다. 이상의 결과로부터 개량된 manual법에 의래 추출된 DNA를 대상으로 계통학적 군집해석을 수행한 결과가 보다 더 다양한 계통군을 검출할 수 있음이 밝혀졌다. 한편, ISOIL kit를 이용하여 구축된 총clone중 약40%가${\alpha}-proteobacteria$ 계통군에 속하였으며, 약 30%가 ${\gamma}-Proteobacteria$ 계통군에 속하여 우점 계통군으로 확인된 반면, manual법에 의해 구축된 clone의 41%가 Acidobacteria 계통군에 속하였고 ${\alpha}-proteobacteria$(28%)가 우점 계통군으로 분포하는 계통학적 특징을 나타내어 DNA추출법에 따라 토양 세균군집 구조의 계통학적 특성 이 상이하게 나타나고 있음을 알 수 있었다.

Keywords

References

  1. 임미라, 유찬, 조재창 . 2003. 환경시료의 생물군집핵산 (community DNA) 추출법 비교 J. Environ. Sci. Eng. 5, 17-19
  2. 조성진, 박천서, 엄대익, 토양학, 2002. 향문사
  3. 한송이, 김윤지, 황경숙. 2005. 16S rDNA-ARDRA 법을 이용한 소나무림과 상수리 나무림 토양 내 VBNC 세균군집의 계통학적 특성 비교 . 한국미생물학회지 42, 116-124
  4. 황경숙, 유승헌. 1995. 유기 영양분 농도에 따른 토양세균의 증식양상과 통상 및 편성 저영양세균의 분리.한국미생물학회지 21,319-324
  5. Alexander, M. 1985. Introduction to soil microbiology. John Wiley & Sons, New York, USA
  6. Amagliani, G., C. Giammarini, E. Omiccioli, G. Brandi, and M. Magnani. 2007. Detection of Listeria monocytogenes using a commercial PCR kit and different DNA extraction methods. Food Control. 18, 1137-1142 https://doi.org/10.1016/j.foodcont.2006.06.012
  7. Brummer, I.H.M., A. Felske, and I. Wagner-Dobler, 2003. Diversity and seasonal variability of $\beta$-proteobacteria in biofilms of polluted rivers: analysis by temperature gradient gel electrophoresis and cloning. Appl. Environ. Microbiol. 69, 4463-4473 https://doi.org/10.1128/AEM.69.8.4463-4473.2003
  8. Di Pinto, A, V.T. Forte, M.C. Guastadisegni, C. Martino, F.P. Schena, and G. Tantillo. 2007. A comparison of DNA extraction methods for food analysis. Food Control. 18, 76-80 https://doi.org/10.1016/j.foodcont.2005.08.011
  9. Dilly, O., J. Bloem, A Vos, and J.C. Munch. 2004. Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70, 468-474 https://doi.org/10.1128/AEM.70.1.468-474.2004
  10. Fortin, N., D. Beaumier, K. Lee, and C.W Greer. 2004. Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J. Microbiol. Methods 56, 181-191 https://doi.org/10.1016/j.mimet.2003.10.006
  11. Greene, K. 2002. New method for culturing bacteria. Science 296, 1000
  12. Guan, L.L., K.E. Hagen, G. W. Tannock, D.R. Korver, G.M. Fasenko, and G.E. Allison. 2003. Detection and identification of Lactobacillus species in crops of broilers of different ages by using PCR-denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis. Appl. Environ. Microbiol. 69, 6750-6757 https://doi.org/10.1128/AEM.69.11.6750-6757.2003
  13. Ibekwe, A.M., A.C. Kennedy, J.J. Halvorson, and C.-H. Yang. 2007. Characterization of developing microbial communities in Mount St. Helens pyroclastic substrate. Soil Biol. Biochem. 39, 2496-2507 https://doi.org/10.1016/j.soilbio.2007.05.010
  14. Insam, H. and K. Haselwandter. 1989. Metabolic quotient of the soil microflora in relation to plant succession. Oecologia. 79, 174-178 https://doi.org/10.1007/BF00388474
  15. Kaeberlein, T., K. Lewis, and S.S. Epstein. 2002. Isolating 'Uncultivable' microorganism in pure culture in a simulated natural environment. Science 296, 1127-1129 https://doi.org/10.1126/science.1070633
  16. Kim, M.J. and J.S. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103,91-96 https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  17. Lagace, L., M. Pitre, M. Jacques, and D. Roy. 2004. Identification of the bacterial community of maple sap by using amplified ribosomal DNA (rDNA) restriction analysis and rDNA sequencing. Appl. Environ. Microbiol. 70, 2052-2060 https://doi.org/10.1128/AEM.70.4.2052-2060.2004
  18. Lloyd-Jones, G. and D.W.F. Hunter. 2001. Comparison of rapid DNA extraction methods applied to contrasting New Zealand soils. Soil Biol. Biochem. 33, 2053-2059 https://doi.org/10.1016/S0038-0717(01)00133-X
  19. Nei, M. and W.H. Li. 1979. Mathematics model for studying genetic variation in terms of restriction endoniclease. Proc. Natl. Acad. Sci. USA. 76, 5269-5273
  20. Plourde-Owobi, L., D. Seguin, M.-A. Baudin, C. Moste, and B. Rokbi. 2005. Molecular characterization of Clostridium tetani strains by pulsed-field gel electrophoresis and colony PCR. Appl. Environ. Microbiol. 71,5604-5606 https://doi.org/10.1128/AEM.71.9.5604-5606.2005
  21. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol. Biol. Evol. 4, 281-295
  22. Sebat, J.L., F.S. Colwell, and R.L. Crawford. 2003. Metagenomic profiling: Microarray analysis of an environmental genomic library. Appl. Envir. Microbiol. 69, 4927-4934 https://doi.org/10.1128/AEM.69.8.4927-4934.2003
  23. Sheu, D.S., Y.T. Wang, and C.Y. Lee. 2000. Rapid detection of polyhydroxy-alkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146, 2019-2025 https://doi.org/10.1099/00221287-146-8-2019
  24. Smalla, K., M. Oros-Sichler, A. Milling, H. Heuer, S. Baumgarte, R. Becker, G Neuber, S. Kropf, A. Ulrich, and C.C. Tebbe. 2007. Bacterial diversity of soils assessed by DGGE, T-RFLP, and SSCP fingerprints ofPCR-amplified 16SrRNA gene fragments: Do the different methods provide similar results? J Microbiol. Methods 69, 470-479 https://doi.org/10.1016/j.mimet.2007.02.014
  25. Stackebrandt, E., W. Liesack, and B.M. Goebel. 1993. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J. 7,232-236 https://doi.org/10.1096/fasebj.7.1.8422969
  26. Takada-Hoshino, Y. and N. Matsumoto. 2004. 'An improved DNA extraction method using skim milk from soils that strongly adsorb DNA'. Microbes Environ. 19, 13-19 https://doi.org/10.1264/jsme2.19.13
  27. Tebbe, C.C. and W. Vahjen. 1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and yeast. Appl. Environ. Microbiol. 59, 2657-2665
  28. Thomson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W; improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  29. Torsvik, V., F.L. Daae, R.A. Sandaa, and L. Ovreas. 1998. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol. 64, 53-62 https://doi.org/10.1016/S0168-1656(98)00103-5
  30. Torsvik, V. and L. Ovreas. 2007. Microbial phylogeny and diversity in soil. pp. 23-54. In J.D. van Elsas, J.K. Jansson, and J.T. Trevors (ed.), Modem Soil Microbiology, 2nd. CRC Press, Boca Raton, FL, USA
  31. Tsai, Y.L. and B.H. Olson. 1991. Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57, 1070-1074
  32. Whitehouse, C.A. and H.E. Hottel. 2007. Comparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples. Mol. Cell. Probes 21,92-96 https://doi.org/10.1016/j.mcp.2006.08.003
  33. Wolters, V., W.L. Silver, D.E. Bignell, D.C. Coleman, P. Lavelle, W.H. van der Putten, P. de Ruiter, J. Rusek, D.H. Wall, D.A. Wardle, L. Brussaard, J.M. Dangerfield, V.K. Brown, K. Giller, D.U. Hooper, O. Sala, J. Tiedje, and J.A. van Veen. 2000. Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. Bioscience 50, 1089-1098 https://doi.org/10.1641/0006-3568(2000)050[1089:EOGCOA]2.0.CO;2