Identification of the Nitrifying Archaeal Phylotype Carrying Specific amoA Gene by Applying Digital PCR

디지털 PCR을 응용한 특정 amoA유전자를 가진 질산화 Archaea 동정

  • Park, Byoung-Jun (Department of Microbiology, Chungbuk National University) ;
  • Park, Soo-Je (Department of Microbiology, Chungbuk National University) ;
  • Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University)
  • Published : 2007.09.30

Abstract

Mesophilic Crenarchaeota have been known to be predominant among ammonia-oxidizing microorganisms in terrestrial and marine environments. In this study, we determined the archaeal phylotypes carrying specific amoA by combining digital PCR and multiplex-nested PCR. Analysis of samples in which amoA and 16S rRNA gene were amplified showed that amoA gene diversity was relatively higher than that of 16S rRNA gene. Nitrifying archaeal group I.1a was dominant over I.1b group of crenarchaota and euryarchaeota. This approach could be applied for interrelating a functional gene to a specific phylotype in natural environments.

해양 및 토양에서의 암모니아 산화는 세균에 비해 Crenarchaeota 그룹의 archaea에 의해 우세하게 일어나고 있음이 알려졌다. 서해 갯벌에서, 배양에 의존하지 알고, 특정 암모니아 산화유전자(amoA)를 가진 archaea을 동정하고자 디지털 PCR법을 응용한 nested PCR법을 개발하였다. amoA와 16S rRNA유전자가 동시에 증폭된 샘플의 분석결과, 16S rRNA유전자에 비해 amoA 유전자의 다양성 이 높았으며, I.1a 그룹의 crenarchaea가 I.1b 그룹의 crenarchaea보다 갯벌지역에서 암모니아 산화에 우점적으로 기여하고 있음을 알 수 있었다. 본 연구에서 시도된, 디지털 PCR과 multiplex-nested PCR을 접목한 접근법을 이용하면 특정 기능유전자를 가진 미생물을 환경에서 검증하는데 응용할 수 있을 것이다.

Keywords

References

  1. Ahn, Y.B., S.K. Rhee, D.E. Fennell, L.J. Kerkhof, U. Hentschel, and M.M. Hggblom. 2003. Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba. Appl. Environ. Microbiol. 69, 4159-4166 https://doi.org/10.1128/AEM.69.7.4159-4166.2003
  2. Amann, R. 2000. Who is out there? Microbial aspects of biodiver- sity. Sys. Appl. Microbiol. 23, 1-8 https://doi.org/10.1016/S0723-2020(00)80039-9
  3. Beman, J.M. and C.A. Francis. 2006. Diversity of ammonia-oxidizing archaea and bacteria in the sediment of a hypemutrified subtropical estuary Bahia del Tobari, Mexico. Appl. Environ. Microbiol. 72, 7767-7777 https://doi.org/10.1128/AEM.00946-06
  4. Briimmer, I.H.M., A. Felske, and I. Wagner-Dobler. 2003. Diversity and seasonal variability of$\beta$ -Proteobacterla in biofilms of polluted rivers: analysis by temperature gradient gel electrophoresis and cloning. Appl. Environ. Microbiol. 69, 4463-4473 https://doi.org/10.1128/AEM.69.8.4463-4473.2003
  5. De Long, B.F. 1992. Archaea in coastal marine environments. Proc. Natal Acad Sci. USA. 89, 5685-5689
  6. Di Pinto, A., F. VitoTony, M.C. Guastadisegni, C. Martino, F.P. Schena, and G. Tantillo. 2007. A comparison of DNA extraction methods for food analysis. Food Control. 18, 76-80 https://doi.org/10.1016/j.foodcont.2005.08.011
  7. Greene, K. 2002. New method for culturing bacteria. Science 296, 1000
  8. Inagaki, F., M. Suzuki, K. Takai, H. Oida, T. Sakamoto, K. Aoki, K.H. Nealson, and K. Horikoshi. 2003. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl. Environ. Microbiol. 69, 7224-7235 https://doi.org/10.1128/AEM.69.12.7224-7235.2003
  9. Kaeberlein, T., K. Lewis, and S.S. Epstein. 2002. Isolating 'Uncultivable' microorganism in pure culture in a simulated natural environment. Science 296, 1127-1129 https://doi.org/10.1126/science.1070633
  10. Kim, B.S., H.M. Oh, H. Kang, and J. Chun. 2005. Archaeal diversity in tidal and sediment as revealed by 16S rDNA analysis. J. Microbiol. 43, 144-151
  11. Kemnitz, D., S. Kolb, and R. Conrad. 2007. High abundance of Crenarchaeota in a temperate acidic forest soil. FEMS Microbiol. Ecol. 60, 442 https://doi.org/10.1111/j.1574-6941.2007.00310.x
  12. Leinger, S., T. Urich, M. Schloter, L. Schwark, J. Qi, G.W. Nicol, J.I. Prosser, S.C. Schuster, and C. Schleper. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806-809 https://doi.org/10.1038/nature04983
  13. Ottesen, E.A., J. Hong, S.R. Quake, and J.R. Leadbetter. 2006. PCR enables multigene analysis of individual environmental bacteria. Science 314, 1464-1467 https://doi.org/10.1126/science.1131370
  14. Stepanauskas, R. and M.E. Sieracki. 2007. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Nat. Acad. Sci. USA. 104,9052-9057
  15. Sebat, J.L., F.S. Colwell, and R.L. Crawford. 2003. Metagenomic profiling: Microarray analysis of an environmental genomic library. Appl. Environ. Microbiol. 69, 4927-4934 https://doi.org/10.1128/AEM.69.8.4927-4934.2003
  16. Stackebrandt, E., W. Liesack, and B.M. Goebel. 1993. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J. 7, 232-236 https://doi.org/10.1096/fasebj.7.1.8422969
  17. Tsai, Y.L. and B.H. Olson. 1991. Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57, 1070-1074
  18. Thomson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W; Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  19. Park, S.J., B.J. Park, M.S. Kim, and S.K. Rhee. 2007. Abundance and diversity of ammonia-oxidizing Archaea in marine sediments characterized by comparative analysis of archaeal 16S rRNA and amoA genes. Submitted
  20. Park, S.J., C.H. Kang, and S.K. Rhee. 2006. Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J. Microbiol. Biotechnol. 16, 1640-1645
  21. Whitehouse, C.A. and H.E. Hottel. 2007. Comparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples. Mol. Cell. Probes. 21, 92-96 https://doi.org/10.1016/j.mcp.2006.08.003