Rheological and Failure Properties of Polycarbonate/Poly(butylene terephthalate) Blends

폴리카보네이트/폴리(부틸렌 테레프탈레이트) 블렌드의 유변학적 및 파괴특성

  • Nah, Chang-Woon (Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Huh, Mong-Young (Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Choi, Dae-Hwan (Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kook, Jeong-Ho (Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Hwang, In-Ra (Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Jeong, Kwang-Un (Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Hong, Chang-Kook (School of Applied Chemical Engineering, Chonnam National University)
  • 나창운 (전북대학교 신소재공학부) ;
  • 허몽영 (전북대학교 신소재공학부) ;
  • 최대환 (전북대학교 신소재공학부) ;
  • 국정호 (전북대학교 신소재공학부) ;
  • 황인라 (전북대학교 신소재공학부) ;
  • 정광운 (전북대학교 신소재공학부) ;
  • 홍창국 (전남대학교 응용화학공학부)
  • Published : 2007.09.30

Abstract

Trans-esterification behavior of polycarbonate/poly(butylene terephthalate) (PC/PBT) blends was investigated during the melt mixing process. Rheological and fracture behaviors, and fracture morphology were also investigated as a function of PC/PBT blend ratio. Based on FT-IR and $^1H-NMR$ results, a trans-esterification reaction was confirmed to occur between PC and PBT during the melt mixing process. The melt index(MI) decreased with increased PC content, indicating the higher flow resistance of PC. The storage and loss moduli were increased by increasing the PC loading, and the PC/PBT blends were rheologically incompatible based on the Cole-Cole plot. The tensile property increased linearly with the increased PC content. However, the impact strength increased until 50 wt% of PC loading, notably around $30{\sim}40wt%$, and then was levelled off at 50 wt%. Rough ridges were formed on the impact fracture surfaces above the 40 wt% of PC content, supporting the observed higher impact strength in this range.

폴리카보네이트/폴리(부틸렌 테레프탈레이트)(PC/PBT) 블렌드에 대해 용융혼합 과정에서 에스테르 교환반응 거동을 조사하였고, PC/PBT 혼합비에 따른 유변학적 특성, 파괴거동 및 파단면 모폴로지를 조사하였다. FT-IR 및 $^1H-NMR$ 분석을 통해 용융혼합 중에 PC와 PBT간 에스테르화 반응이 일어남을 확인하였다. PC 함량이 증가할수록 용융지수(MI)는 감소하여 PC의 높은 흐름저항성을 확인하였다. 또한 PC 함량이 증가할수록 저장 및 손실 탄성률은 증가하였고, Cole-Cole 도시로부터 PC/PBT 블렌드의 경우 혼합비에 관계없이 유변학적 상용성은 나타내지 않은 것으로 나타났다. 인장강도는 PC 함량이 증가함에 따라 선형적인 증가를 나타내었다. 충격강도의 경우 PC 함량이 증가함에 따라 증가하였는데, 약 $30{\sim}40wt%$ 범위에서 가장 급격한 증가폭을 나타내었고, 50 wt% 이상의 범위에서는 거의 일정한 값을 나타내었다. 충격 파단면을 관찰한 결과 약 40 wt% 이상의 범위에서부터 충격방향으로 거친 파괴 릿지(ridge)가 형성되어서 높은 충격강도를 나타낸 것으로 판단된다.

Keywords

References

  1. A. N. Wilkinson, S. B. Tattum, and A. J. Ryan, Polymer, 38, 1923 (1997) https://doi.org/10.1016/S0032-3861(96)00712-4
  2. G. Montaudo, C. Puglisi, and F. Samperi, Macromolecules, 31, 650 (1998) https://doi.org/10.1021/ma9712054
  3. G. Pompe and L. Hausler, J. Polym. Sci.: Polym. Pbys., 35, 2161 (1997) https://doi.org/10.1002/(SICI)1099-0488(19970930)35:13<2161::AID-POLB16>3.0.CO;2-2
  4. I. Hopfe, G. Pompe, and K.-J. Eichhorn, Polymer, 38, 2321 (1997) https://doi.org/10.1016/S0032-3861(96)00800-2
  5. P. Sanchez, P. M. Remiro, and J. Nazaal, J. Appl. Polym. Sci. 50, 995 (1993) https://doi.org/10.1002/app.1993.070500609
  6. R. S. Halder, M. Joshi, and A. Misra, J. Appl. Polym. Sci, 39, 1251 (1990) https://doi.org/10.1002/app.1990.070390604
  7. J. Devaux, Godard, and J. P. Mercier, Polym. Eng. Sci, 22, 229 (1988) https://doi.org/10.1002/pen.760220403
  8. S. Y. Hobbs, M. E. J. Dekkers, and V. H. Watkins, J. Mater. Sci, 23, 1219 (1988) https://doi.org/10.1007/BF01154581
  9. J. Wu, D.-M. Yu, Y.-W. Mai, and A. F. Yee, J. Mater. Sci, 35, 307 (2000) https://doi.org/10.1023/A:1004741200924
  10. M.-L. Lu and F.-C. Chang, Polymer, 36, 4639 (1995) https://doi.org/10.1016/0032-3861(95)96831-R
  11. A. Golovoy, M.-F. Cheung, K. R. Carduner, and M. J. Rokosz, Polym. Eng. Sci, 29, 1226 (1989) https://doi.org/10.1002/pen.760291803
  12. R. C. Crosby, L. I. Flowers, R. R. OdIe, J. L. De Rudder, and Y. -G. Lin, EP 683, 200 (1995)
  13. D. G. Legrand and J. T. Bendler, ed., Handbook of polycarbonate science and technology, Marcel Dekker, Inc., New York, 2000
  14. G. O. Shonaike and G. P. Simon, Polymer Blends and Alloys, Marcel Dekker, New York, 1999
  15. K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941) https://doi.org/10.1063/1.1750906
  16. H. K Chuang and C. D. Han, J. Appl. Polytn. Sci, 29, 2205 (1984) https://doi.org/10.1002/app.1984.070290625
  17. C. D. Han and T. C. Yu, J. Appl. Polytn. Sci, 15, 1163 (1971) https://doi.org/10.1002/app.1971.070150512
  18. C. D. Han and J. K Kim, Polymer, 34, 2533 (1993) https://doi.org/10.1016/0032-3861(93)90585-X
  19. I. Hopfe, G. Pompe, K.-J. Eichhorn, and L. Hausler, J. Mol. Struct., 349, 443 (1995) https://doi.org/10.1016/0022-2860(95)08804-5
  20. A. W. Birley and X. Y. Chen, Brit. Polym. J., 17, 297 (1985) https://doi.org/10.1002/pi.4980170308
  21. M. Y. Lyu, Polymer(Kores), 26, 237 (2002)
  22. M. Y. Lyu, Y. Pae, and C. Nah, Int. Polytn, Proc., 18, 382 (2003)
  23. J. Devaux, P. Godard, and J. P. Mercier, Polym. Eng. Sci, 22, 229 (1982) https://doi.org/10.1002/pen.760220403