DOI QR코드

DOI QR Code

Pd Seed Layer for Electroless Cu Deposition on TaN Diffusion Barrier by Self-Assembled-Monolayer Method(SAM)

Self assembled-monolayer(SAM)법을 이용한 TaN 확산방지막의 무전해 Cu 도금용 Pd seed layer 제조 및 특성

  • Han, Won-Kyu (Division of Materials Science and Engineering, Hanyang University) ;
  • Cho, Jin-Ki (Department of advanced Materials Engineering, Korea Polytechnic University) ;
  • Choi, Jae-Woong (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Jeong-Tae (R&D Divisions, Hynix Semiconductor Inc.) ;
  • Yeom, Seung-Jin (R&D Divisions, Hynix Semiconductor Inc.) ;
  • Kwak, Noh-Jung (R&D Divisions, Hynix Semiconductor Inc.) ;
  • Kim, Jin-Woong (R&D Divisions, Hynix Semiconductor Inc.) ;
  • Kang, Sung-Goon (Division of Materials Science and Engineering, Hanyang University)
  • Published : 2007.09.27

Abstract

Electroless deposition(ELD) was applied to fabricate Cu interconnections on a TaN diffusion barrier with Pd seed layer. The Pd seed layer was obtained by self-assembled monolayer method(SAM) with PDDA and PSS as surfactants. We were able to obtain about 10nm Pd nano particles as seeds for electroless Cu deposition and the density of Pd seeds was much higher than that of Pd seeds fabricated by conventional Pd sensitization-activation method. Also we were able to obtain finer Cu interconnections by ELD. Therefore we concluded that the Pd seed layer by SAM was able to be applied to form Cu interconnection by ELD for under 30nm feature.

Keywords

References

  1. B. Li, T. D. Sullivan, T.C. Lee and D. Badami, Microelectron. Reliab., 44, 365 (2004) https://doi.org/10.1016/j.microrel.2003.11.004
  2. D. C Edelstein, G. A. Sai-Halasz and Y. J. Mii, IBM J. Res. Develop, 39(4), 383 (1995) https://doi.org/10.1147/rd.394.0383
  3. A. K. Stamper, M. B. Fushelier and X. Tian, Advanced wiring RC delay issues for sub-0.25-micron general CMOS in proceedings of Int. Interconnect Tech. Conf. (IITC) 62 (1998)
  4. G. Ritter, P. McHugh, G. Silson and T. Ritzdrf, Solid State Electron. 44, 797 (2000) https://doi.org/10.1016/S0038-1101(99)00276-2
  5. J. A, Cunningham, Semicond. Int. 23, 97 (2003)
  6. K. Rose and R. Mangaser, IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, Boston, MA, 347 (1998)
  7. J. Reid, S. Mayer, E. Broadbent, E. Klawuhn and K. Ashtiani, Solid State Technol. 43, 86 (2000)
  8. P. P. Lau, C. C. Wong and L. Chan, Appl. Surf Sci., 253, 2357 (2006) https://doi.org/10.1016/j.apsusc.2006.05.001
  9. B. S. Suh, Y, J. Lee, J. S. Hwang and C. O. Park, Thin solid Films, 348, 299 (1999) https://doi.org/10.1016/S0040-6090(99)00055-3
  10. H. H. Hsu, C.-C. Hsieh, M.-H. Chen, S.-J. Lin and J.W. Yeh, J. Electrochem, Soc., 148(9), C590 (2001)
  11. Z. Wang, H. Sakaue, S. Shingubara and T. Takahagi, Jpn. J. Appl. Phys, 42, 1843 (2003) https://doi.org/10.1143/JJAP.42.1843
  12. Q. Xie, X. P. Qu, J. J. Tan, Y. L. Jiang, M. Zhou, T. Chen and G. P. Ru, Appl. Surf Sci, 253, 1666 (2006) https://doi.org/10.1016/j.apsusc.2006.03.002
  13. B. Luan, M. Yeung.W. Wells and X. Liu, Appl. Surf. Sci, 156, 26 (2000) https://doi.org/10.1016/S0169-4332(99)00339-6