DOI QR코드

DOI QR Code

Characteristic of Copper Films on Molybdenum Substrate by Addition of Titanium in an Advanced Metallization Process

Mo 하지층의 첨가원소(Ti) 농도에 따른 Cu 박막의 특성

  • Hong, Tae-Ki (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Jea-Gab (School of Advanced Materials Engineering, Kookmin University)
  • 홍태기 (국민대학교 신소재공학부) ;
  • 이재갑 (국민대학교 신소재공학부)
  • Published : 2007.09.27

Abstract

Mo(Ti) alloy and pure Cu thin films were subsequently deposited on $SiO_2-coated$ Si wafers, resulting in $Cu/Mo(Ti)/SiO_2$ structures. The multi-structures have been annealed in vacuum at $100-600^{\circ}C$ for 30 min to investigate the outdiffusion of Ti to Cu surface. Annealing at high temperature allowed the outdiffusion of Ti from the Mo(Ti) alloy underlayer to the Cu surface and then forming $TiO_2$ on the surface, which protected the Cu surface against $SiH_4+NH_3$ plasma during the deposition of $Si_3N_4$ on Cu. The formation of $TiO_2$ layer on the Cu surface was a strong function of annealing temperature and Ti concentration in Mo(Ti) underlayer. Significant outdiffusion of Ti started to occur at $400^{\circ}C$ when the Ti concentration in Mo(Ti) alloy was higher than 60 at.%. This resulted in the formation of $TiO_2/Cu/Mo(Ti)\;alloy/SiO_2$ structures. We have employed the as-deposited Cu/Mo(Ti) alloy and the $500^{\circ}C-annealed$ Cu/Mo(Ti) alloy as gate electrodes to fabricate TFT devices, and then measured the electrical characteristics. The $500^{\circ}C$ annealed Cu/Mo($Ti{\geq}60at.%$) gate electrode TFT showed the excellent electrical characteristics ($mobility\;=\;0.488\;-\;0.505\;cm^2/Vs$, on/off $ratio\;=\;2{\times}10^5-1.85{\times}10^6$, subthreshold = 0.733.1.13 V/decade), indicating that the use of Ti-rich($Ti{\geq}60at.%$) alloy underlayer effectively passivated the Cu surface as a result of the formation of $TiO_2$ on the Cu grain boundaries.

Keywords

References

  1. E. G. Colgan, P. M. Fryer, E. Galligan, W. Graham, R. Horton, D. Hunt, L. Jenkins, R. John, P. Koke, Y. Kuo. K. Latzko, J. Libsch, A. Lien, K. Lovas, R. Nywening, R. Polastre, M. E. Rothwell, J. Wilson, R. Wisnieff and S. L. Wright, Proc. of IDW' 03 (Kobe), P. 29. (1996)
  2. A. Awaya and Y. Arita, J. Electron. Mater., 21, 959 (1992) https://doi.org/10.1007/BF02684203
  3. Y. J. Park, V. K. Andleigh and C. V. Thompson, J. Appl. Phys., 85, 3546 (1999) https://doi.org/10.1063/1.369714
  4. H. Itow, Y. Nakasaki, G. Minamihaba, K. Suguro and H. Okano, Appl. Phys. Lett., 63(7), 934 (1993) https://doi.org/10.1063/1.109849
  5. O. Aubel, E. Bugiel, D. Kruger, W. Hasse and M. Hommel, Microelectronics Reliability, 46, 768 (2006) https://doi.org/10.1016/j.microrel.2005.10.010
  6. J. M. E. Harper, J. Gupta, D. A. Smith, J. W. Chang, K. L. Holloway, C. Cabral, Jr., D. P. Tracy and D. B. Knorr, Appl. Phys. Lett., 65, 177 (1994) https://doi.org/10.1063/1.112664
  7. W. H. Lee, Y. K. Ko, J. H. Jang, C. S. Kim, P. J. Reucroft, and J. G. Lee, J. Electron. Mater., 30, 1042 (2001) https://doi.org/10.1007/BF02657730
  8. C. Cabral, Jr., J. M. E. Harper, K. Holloway, D. A. Smith, and R. G. Schad, J. Vac. Sci. Technol., A 10, 1706 (1992) https://doi.org/10.1116/1.577774
  9. K. Barmak, G. A. Lucadamo, C. Cabral, Jr., C. Lavoie, and J. M. E. Harper, J. Appl. Phys., 87, 2204 (2000) https://doi.org/10.1063/1.372162
  10. S.-L. Zhang, J.M.E. Harper, and F.M. d'Heurle, J. Electron, Mater., 30, 59 (2001) https://doi.org/10.1007/s11664-001-0100-5
  11. A. Isobayashi, Y. Enomoto, H. Yamada, S. Takahashi and S. Kadomura, Proceedings of the 2004 International Electron Device Meeting, IEDM, San Francisco, CA, Dec 13-15, p. 953. (2004) https://doi.org/10.1109/IEDM.2004.1419342
  12. S. J. Hong, S. Lee, H. J. Yang, H. M. Lee, Y. K. Ko, H. N. Hong, H. S. Soh, C. K. Kim, C. S. Yoon, K. S. Ban and J. G. Lee, Semicond. Sci. Technol., 19, 1315 (2004) https://doi.org/10.1088/0268-1242/19/1/L02