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Abstract

In this paper, we consider the variable selection methods
in the Cox model when a large number of gene expression
levels are involved with survival time. Deciding which genes
are associated with survival time has been a challenging
problem because of the large number of genes and
relatively small sample size (n << p). Several methods for
variable selection have been proposed in the Cox model.
Among those, we consider least absolute shrinkage and
selection operator (LASSO), threshold gradient descent
regularization (TGDR), and two different clustering threshold
gradient descent regularization (CTGDR)—the K-means
CTGDR and the hierarchical CTGDR—and compare these
four methods in an application of lung cancer data.
Comparison of the four methods shows that the two
CTGDR methods yield more compact gene selection than
TGDR, while LASSO selects the smallest number of
genes. When these methods are evaluated by the
approach of Ma and Huang (2007), none of the methods
shows satisfactory performance in separating the two risk
groups using the log-rank statistic based on the risk scores
calculated from the selected genes. However, when the risk
scores are calculated from the genes that are significant
in the Cox model, the performance of the log-rank statistics
shows that the two risk groups are well separated.
Especially, the TGDR method has the largest log-rank
statistic, and the K-means CTGDR method and the LASSO
method show similar performance, but the hierarchical
CTGDR method has the smallest log-rank statistic.
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Introduction

One of main issues in survival analysis is to investigate the
association of the survival time of patients with various
clinical covariates. The Cox model has been most popularly
used for analyzing survival data and provides predictive
variables of survival time by using a variety of classical
methods for variable selection, such as forward selection,
backward elimination, and stepwise selection. However,
classical methods such as stepwise selection procedures
yield a computational problem when a large number of
gene expression variables are involved in considering the
association of survival time and often suffer from high
variability. In addition, variable selection can be more
challenging due to censoring mechanisms in survival
analysis. Shrinkage methods such as LASSO have been
proposed for Cox’s proportional hazards model based on
partial or pseudo-partial likelihoods (Tibshirani, 1996;
Tibshirani, 1997). LASSO is widely used and has shown
good performance. Another regularization method is the
TGDR method proposed by Gui and Li (2005), which is
used to identify a small number of individual genes and to
build predictive models based on those genes.

On the ather hand, it is well known that there exist genes
whose expressions are highly correlated and should be put
into clusters (Tamayo et al., 1999). Cluster analysis methods
have been employed in microarray studies to reduce the
large number of genes into a small number of gene clusters.
Once a small number of gene clusters are constructed
using methods such as K-means or hierarchical methods,
the mean expressions of genes within the same cluster are
computed and then used as covariates in the final model.
However, this approach has a limitation of selecting the
feature at the cluster level, which implies that all genes
within the selected clusters are included in the final model.
Since it is not necessarily true that all genes are associated
with survival time, even though genes within the same
cluster may have correlated expressions, noisy genes may
yield less reliable models. In order to incorporate the cluster
structure into variable selection, Ma and Huang (2007)
proposed a clustering threshold gradient descent regu-
larization (CTGDR) method in which feature selectionis made
at both the cluster level and the individual gene level within
each cluster. The CTGDR method considers the cluster
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structure and takes advantage of both the cluster-based
and regularized variable selection methods.

In this paper, we review four methods of variable selection
and assess these methods for use in the Cox model when
alarge number of gene expression levels are involved in
predicting survival time. Furthermore, these methods are
evaluated using the log-rank statistic to compare their
performance. We describe the Cox proportional hazards
model and review three methods—LASSO, TGDR and
CTGDR—to allow researchers to choose the most appro-
priate method for selecting variables. The performances of
these methods are compared using a data set of lung carci-
nomas published on the PNAS website (www. pnas.org),
and at www.genome.wi.mit.edu/ MPR/lung, and a dis-
cussion is given.

Model and Methods

The Cox proportional hazards model

Consider the survival data setup, Y= (X, A), where
X=min{7, C) and A =K T < C).Here, T and C denote
the survival time and censoring time, respectively, and Z
denotes the covariate vector. The Cox model (Cox, 1972)
assumes that the conditional hazard function is independent
of the time, t, given as:

A1 Z) = A exp(S'Z)

where X, (t)is the unknown baseline hazard function
and 3 is the regression coefficient. One usually estimates
the parameter £ in the Cox model without specification of
A (t) through maximization of the partial likelihood
function, defined by:

L(ﬁ) _I;II{Z}_E” exp(ﬂvzj)}

where r, ={j: T; = 7;} is the risk set at time 7; and
8, = KT, < C,) is an uncensored indicator function.

Methods

We reviewed three methods for selecting susceptible
genes among a large number of genes for relatively small
sizes. There is a wide variety of regularization methods
depending on how they define the objective functions with
regularizing parameters. Here, LASSO, TGDR, and
CTGDR will be compared in the study of the association
between survival time and gene expression levels in the
Cox model.

LASSO

Denote the log partial likelihood function by £(3) =log L(3)
and assume that the covariates Z; are standardized so that
3. Z/n=0and. Y] 22 /n=1. In the linear regression
setting, Tibshirani (1996) proposed minimization of the
residual sum of squares, subject to a constraint of the form
3 I3 < s and called the resulting procedure LASSO
Therefore the estimator of 3 is obtained via the following
criterion:

g=arg min £(g) subjectto Y 18] < s

where s > 0 is a user-specified parameter. Suppose
that B, are the estimates that maximize the partial
likelihood. Then, if Y& < s, the solutions are the usual
partial likelihood estimates. If Yi3] = s, however, the
solutions are shrunken toward zero. The attractive feature
of LASSO s that quite often some of the solution coefficients
are exactly zero, whereas the ridge regression approach
shrinks coefficients but does not give coefficients that are
exactly zero. LASSO is a tool for achieving a parsimonious

model and provides a more interpretable final model.
As described in Tibshirani (1997), the estimation
procedure of LASSO is expressed by the usual Newton-
Raphson update as an iterative reweighted least squares
step, replacing the weighted least squares step by a
constrained weighted least squares procedure. Let H
denote the design matrix of regressor variables and n = Hp,
14 82 Z

defineu=—, A=—
an

Tibshirani, 1990). Using a one-term Taylor series
expansion for £(8)= (y—n)TA(y—n), we solve the
problem. Then,the solution of LASSO is obtained by
iterating the following procedure given by Tibshirani
(1997):

1. Fix s and initialize 3=0.

2. Compute 7, u, 4 and y based on the current value
of 3.

3. Minimize (y—Hp) T A(y—Hp) subjectto Y 15,1 < s.

4. Repeat step 2 and 3 until 3 does not change.

One difficulty with the above procedure is that A is a full
of matrix, and hence it requires computation of O(N?)
elements. To avoid this, we replace A with a diagonal matrix
D that has the same diagonal elements as A. As argued
by Hastie and Tibshirani (1990, pp.212-213), the diagonal
elements of A are larger than the off-diagonal elements,
and hence the modified algorithm should behave similarly
to the original one.
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TGDR

In fitting data based on linear models, the gradient descent
pathfinding paradigm can be generalized to include the
use of a wide variety of loss criteria, leading to robust
methods for regression and classification, as well as to
apply user-defined constraints on the parameter values.
The paths induced by ridge regression (RR), gradient
regularization (GD), and LASSO differ in how they define
the interior points along their respective paths. With
gradient descent-based procedures, one way to direct the
path toward parameter points with more diverse
component values is to increase the diversity of the factor
values with a threshold parameter. The following
procedure explains briefly how to perform threshold
gradient descent regularization.

Denote Av as the small positive increment as in
ordinary gradient descent methods (see Friedman and
Popescu, 2004). In the implementation of this algorithm,
we choose Av=1x 10 *. Denote v, = k< Av as theindex
for the point along the parameter path after k steps. Let
B(v,) denote the parameter estimate corresponding to v,.
For any fixed threshold, 0 < r< 1, the TGDR algorithm
consists of the following steps:

1. Initialize p(0)=0 and v,= 0.

2. With current estimate B, compute the negative
gradient g¢(v) =—aL(B)/a3. Denote the j-th
component of g(v) as gj(l/) If maxj{|gj(1/)|}, stop the
iterations.

3. Compute the threshold vector f(v) of length d, where the
j-th component of f(v): f].(u) = I{|gj(1/)| > TXmaxllgl(y)}

4.Update B(v+Av)=8)—Avx g(v) x f(v) and
update v by v+ Av, where the product of f and gis
component-wise.

5. Steps 2-4 are repeated « times. The number of
iterations x is determined by cross validation.

Here, the property of B is determined by tuning parameters
7 and x. For example, B is dense even for small values of «

fort~ 0 , while B is sparse for small values of x and remains
so for a relatively iarge number of iterations, but will

become dense eventually for t= 1 . For the extreme case
of t = 1, the TGDR method usually increases in the direction
of a single covariate in each iteration. For the middle range
of 1, the characteristics of B are between those for =0 and
t=1. For t# 0, variable selection can be achieved with
cross-validated, finite x, by having certain components of
B exactly zero.

CTGDR
While the TGDR method deals with individual gene
selection but does not take into account the cluster

structure, the CTGDR method considers both individual
gene selection and cluster structure. Ma and Huang (2007)
discussed two naive CTGDR algorithms. The first naive
CTGDR method modifies step 3 of TGDR as follows:

=1 5 e @k 3 150

C(k) 1eC(k)

where 0 < 7, <1 is the threshold tuning parameter.
This algorithm uses cluster gradients to replace the
individual gradients and considers the combined effects
of genes in the same clusters, which implies that the genes
within the same clusters may have different contributions
in the final model, while all genes within the same clusters
have equal contributions to the final model in traditional
cluster-based methods.

The second naive CTGDR method modifies step 3 by
replacing f in step 3 of TGDR with

£ 0=1{g, )k 5, xmax| 20|

so that each gene is compared only with other genes within
the same cluster and only important genes from each
cluster are selected. This algorithm is roughly equivalent
to carrying out the TGDR method in each cluster
separately, and the final modet includes genes selected
from all clusters.

In summary, the first naive CTGDR method carries out
cluster selection but does not select important genes with
each cluster, while the second naive CTGDR method
carries out gene selection in each cluster separately but
does not select clusters. By combining the strengths of the
two naive algorithms, Ma and Huang (2007) proposed the
CTGDR method that incorporates cluster structure into
TGDR-based variable selection.

Let 7, 7,<0,1] be two threshold parameters. In step
3 of the TGDR aigorithm, define

T = £ 1)

where f! (v) and f?(v) are defined in the first naive
CTGDR and the second naive CTGDR methods,
respectively. Thenf' (v) carries out cluster selection,

while f? (v)carries out within-cluster gene selection. The
combined CTGDR carries out feature selection both at the

cluster level and within the cluster level. By allowing
different threshold values of 7, and ,, more flexible results
can be obtained.

Like the TGDR method, the properties of the CTGDR
estimates are determined by the three tuning parameters
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x, 7, and ,. If 7 and ,are both close to 1, then the estimate
remains sparse for a relatively large « but will become
dense eventually. If 7, and , are both close to 0, then the
estimate is dense for even a very small . With nonzero
7, and 7,, the model with small to moderate x usually has
a small number of clusters and a small number of genes
within each selected cluster.

Tuning parameter selection

Since the characteristics of the CTGDR estimates are
determined by the three tuning parameters, «, =, and 7,,
the selection of these parameters should be well defined.
Ma and Huang (2007) defined the cross-validated
objective function, CV(k), having chosen the tuning
parameter « that maximizes CV(k) for any fixed (,, 7,),
and obtained model features for different -, and r,. Then,
the parsimonious model with relatively large CV score has
been chosen.

Results

Carcinoma of the lung has been the leading cause of
cancer death in the United States and worldwide. Human
lung carcinomas were classified by mRNA expression
profiling, and distinct adenocarcinoma subclasses were
revealed by Bhattacharjee et al. (2001). Hierarchical
clustering was applied to recapitulate the distinctions
between established historical classes of lung tumors and
adenocarcinomas. Furthermore, the relationship between
gene expression tumor classes and the survival times has
been studied. However, it is very challenging to identify
genes that have significant effects on survival time
because of a large number of genes and relatively small
sample sizes. To select significant variables from a large
number of variables (e.g., genes) effectively, many methods
have been developed, including LASSO and other
regularization methods. We apply these methods to our data
set in order to identify the significant genes for lung carcinomas.

A total of 203 snap-frozen lung tumors (n=186) and
normal lung (n=17) specimens were sampled. The 203
specimens include histologically-defined lung, adenocar-
cinomas (n=127), squamous cell lungcarcinomas (n=21),
pulmonary carcinoids (n=20), small-cell lung cancer (n=6)
cases, and normal lung (n=17) specimens. Other
adenocarcinomas (n=12) were suspected to be extrapul-
monary metastases based on clinical history. Using
oligonucleotides, mRNA expression levels corresponding
to 12,600 transcript sequences were analyzed from 186
lung tumor samples, including 139 adenocarcinomas
resected from the lung. Among 12,600 transcript sequences,
the 3312 most variable transcript sequences were selected
by using a standard deviation threshold of 50 expression

units. Only 125 adenocarcinoma samples were used for
analysis due to availability of clinical data, such as the
survival time. Genes were also standardized to have zero
mean and unit variance. Applying the gap statistics, the
number of clusters was selected as 15 (K-means) and 25
(Hierarchical), respectively, as shown in Fig. 1.

We obtained the result of model features with cross-
validation-selected tuning parameters. As shown in Table
1, we compare the four methods, including two different
CTGDR methods depending on the clustering methods.
The TGDR method selects the largest number of genes
while the LASSO method selects the smallest number of
genes. The two different CTGDR methods select the
similar number of genes. The whole list of genes selected
by the four methods can be given on request.

Since a list of genes selected by four methods is not
perfectly matched across methods, it is desirable to
compare which genes are selected from all methods and
how similar the selected genes are across methods. Table
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Fig. 1. Gap statistic as a function of number of clusters. Dark
line; Acmeans clustering. Gray line: hierarchical clustering.

Table 1. Comparison of methods for gene selection

Method Tuning Non-zero Gene  Cluster
K-means-CTGDR (r, 79)=(1,1) 24 4
K-means-simple - 3312 15
HierarchicaCTGDR (73, To)=(1,1) 23 3
Hierarchical-simple - 3312 25

=1
TGDR Av=1e-04 31 ;
u=5.321
LASSO A=23.728 6 -
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2 displays a list ofgenes that are selected by more than two
methods. Comparing the selected genes shown in Table
2, TGDR includes most of the genes selected by the other
methods, while all of the genes selected by LASSO are
included in those by TGDR, but only three genes
overlapped with those selected by K-means CTGDR.
Comparing the two different CTGDR methods, the 12
genes selected by K-means CTGDR are the same as those
selected by the TGDR method, while only 5 genes selected
by hierarchical CTGDR are the same as those selected by
the TGDR method. Only four of the same genes are
selected by both the K-means and hierarchical CTGDR
methods. From these results, TGDR includes almost all
genes selected by both the K-means and hierarchical
CTDGR methods. This result implies that the selection of
genes depends on the clustering information as well as the
clustering methods. We can make a statistical inference
about the association of genes with survival time from a
list of genes selected across methods. For example, itis
suspected that the seven genes selected by the three
methods as displayed in Table 2 would be more strongly
associated with survival time. Aithough TGDR and LASSO
are effective regularization methods for variable selection,
they do not consider cluster structures, whereas two
different CTGDR methods incorporate cluster structures
into TGDR-based variable selection. However, the two
CTGDR methods select genes rather independently
except for four overlapping genes. Moreover, when

Table 2. A list of genes selected by more than two methods
with the estimates of regression coefficients

Gene name B . coefficient of regressor

Method Topr ~ Mierarchical- - Ameats | ass0
X37330_at -0.0195* -0.0218 -0.0271
X31990_at -0.0625 -0.1540 -0.1118
X1707_g_at -0.0376 -0.0157 -0.0077
X35104_r_at -0.0520 -0.0096
X38833_at -0.0516 -0.0734 -0.0008
X32623_at -0.0630 -0.0089
X41221_at 0.1120 0.1269 0.0949
X39079_at 0.1780 0.1142 .0.0626
X40193_at 0.0908 0.1695 0.0421
X41332_at 0.0077 0.0373
X34857_at 0.0111 0.0213
X31477_at 0.0846 0.1021
X32137_at 0.0544 0.1174
X33453_at -0.0031 0.0656
X38791_at -0.0815 -0.0778
X41749_at -0.0992 -0.0138
X40096_at -0.0407 -0.0092

*The seven genes selected by three methods are written in bold.

comparing the estimated coefficients of genes, the LASSO
yields smaller values of the estimated coefficients than the
other three methods. From the results in Table 2, it is not
easy to know which method is the best for variable
selection.

Evaluation

To evaluate the prediction performance, we use the cross-
validation-based approach, as suggested in Ma and Huang
(2007), as follows:

First, we partition the data randomly into a training set
of size n, and a test set of size n,, with n, +7, =n Then
we compute the CTGDR estimates based on the training

~ set only and compute a prediction index for the testing set

using the training set estimates. To overcome the possibility
of extreme prediction performance, repeat this process B
(e.g., 100) times. For the censored survival data, we create
two risk groups by dividing the testing set by a median risk
score of the estimated linear risk scores 5Z. The estimates
of regression coefficients of the selected genes are partly
shown in Table 2. Then we compute the log-rank statistic
for testing the equivalence of two survival curves of
different risk groups. After repeating this procedure B
times, we take the average of the log-rank statistics. If this
value of the log-rank statistic is large, thenthe two risk
groups are well separated, which implies that the prediction
of the CTGDR estimates performs satisfactorily.

Alternatively, as suggested by a referee, we compute
the different median risk score, which is obtained from the
significant genes from the fitted Cox model in which only
the selected genes are considered. In other words, the
methods are evaluated with the risk scores of the different
estimates from those shown in Table 2, which are displayed
in Table 3. For example, for the LASSO method, the Cox
model is fitted with six selected genes but only four
significant genes of the six genes are involved in
calculating the risk score and the log-rank statistic for
testing the equivalence of the two risk groups.

Comparing the results of Table 2 and Table 3, only a
few genes are overlapped within the two Tables. In
addition, the estimates shown in Table 3 are much larger
than those in Table 2, though the signs of the estimates
are unchanged.

For the comparison of methods, we evaluate the
prediction performance of methods using the two different
log-rank statistics based on the 3-fold cross-validation with
B=100 and 200 random partitions, respectively. As shown
in Table 4, none of the methods provides the significant
separation of the high- and low-risk groups by log-rank
statistic calculated by the risk score from the estimates of
each method, since the average values of the log-rank
statistics are not large enough to be significant for testing
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Table 3. Alist of genes selected from the Cox model with the
estimates of regression coefficients

Gene name 3 : coefficient of regressor
Method TGDR Hierarchical-

CTGDR
X41332_at
X39079_at
X31990_at
X36924 r_at
X32623_at
X32137_at
X38791_at
X39758_at
X36070_at
X38392_at
X571_at
X38833_at
X40075_at
X40095_at
X39242_at
X36838_at
X41767_r_at
X838_s_at
X37678_at
X37037_at
X34857_at
X41749_at
X40096_at
X40193_at

K-means
CTGDR

0.3917

LASSO

0.6998
0.5443 0.3615
-0.5089 -0.4563
0.6796 0.8081
-0.5843
0.3935
-0.6403
0.5506
0.3640
0.5230
0.4785
-0.3682
0.6210
-0.4504
-0.4183
-0.5661
-0.5305
-0.4028
-0.5437
0.4935
0.3538
-0.3188
-0.4911
0.2994

Table 4. Evaluation resuit of four methods based on two different
log-rank statistics

The
The number Log-rank* number of Log-rank**

Method of Non-zero 5 #y4cv) Significan (3-old-CV)

Genes t Genes
Kameans-CTGDR 24 0.5853 9 7.7179
Hierarchical-CTGDR 23 0.2914 7 48772
TGDR 31 0.4966 8 13.8748
LASSO 6 0.3350 4 6.0241

*log-rank statistic based on the risk score from the estimates of the
selected genes with B=100

**log-rank statistic based on the risk score from the estimates of the
significant genes in the Cox model with B=200

the equivalence of the two groups. However, the log-rank
statistics show significant results for all methods when the
risk scores are computed using the estimates of the
significant genes in the fitted Cox model. Among those,
TGDR has the largest value of the log-rank statistic, while
the hierarchical CTGDR method has the smallest value of
the log-rank statistic. The K-means CTGDR method and
LASSO have similar values of the log-rank statistic. This
result seems to be rather contradictory to what is expected
because the two CTGDR methods do not show better

performance than TGDR, even though these methods use
more information about clustering structures than TGDR.
According to the results shown in Table 4, the TGDR
method performs better than the K-means and hierarchical
CTGDR, while the LASSO method has slightly better
predictive value than the hierarchical CTGDR method.
However, the results from Table 4 can not be generalized
because tuning parameter values and the number of
clusters are not chosen over a variety of choices. For the
generality of results, more performance should be
implemented by considering a variety of parameters that
can affect variable selection as well as evaluation of the
performance.

Discussion

In this paper, we review four methods—LASSO, TGDR
and two different CTGDR—to investigate which genes are
significantly predictive of survival time using the Cox
model. Since there is a large number of genes available,
itis not easy to select susceptible genes for relatively smalll
sample sizes. The LASSO method shrinks coefficients
and produces some coefficients that are exactly zero,
which identifies a small number of important genes. The
TGDR method is also effective for variable selection using
path information. However, these two methods do not use
cluster structure, whereas the CTGDR method takes
advantage of clustering structures.

Comparison of the four methods using an example of
lung tumor data showed that the two different CTGDR
methods yield more compact gene selection than TGDR,
which includes almost all genes selected by two CTGDR
methods, whereas LASSO provides a smaller subset of
genes than other methods. Since the selected genes are
not consistent for each method, itis difficult to determine
which method provides the best selection of genes. The
performance of methods is evaluated using 3-fold
cross-validation based on two log-rank statistics. One of
them is calculated using the risk score from the estimates
of selected genes, while the other is calculated using the
risk score from the estimates of the significant genes from
the fitted Cox model. None of the methods provides any
significant result in separating the high- and low-risk
groups by the first log-rank statistic, whereas all methods
yield significant results in separating the two risk groups
with the second log-rank statistic. This is due to differences
in the estimates of the coefficients depending on whether
regularization is involved in the estimation process or not.
The estimates for the Cox model are obtained without any
regularized penalty, whereas the regularized estimates
are obtained by using penalty to be selected from a large
number of genes. Therefore, it seems to be more desirable
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to estimate the effects of genes in the Cox model once the
significant genes are selected using some regularization
methods.

In addition, it would be more profitable to evaluate the
methods by choosing from a variety of choices of tuning
parameters, the number of clusters, and the validation
statistics. Since the performance also depends on clustering
information, it may be critical which information can be used
for CTGDR. For example, if there are well-defined biological
pathways, the proposed CTGDR method can makeuse of
that information to select susceptible genes. Therefore, it
would be desirable to extend this method with more
information of pathways in future studies.
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