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Abstract

MicroRNAs (miRNAs) are known to negatively control pro-
tein-coding genes by binding to messenger RNA (mRNA)
in the cytoplasm. In innate immunity, the role of mIRNA gene
silencing is largely unknown. In this study, we performed
microarray-based experiments using lipopolysaccharide
(LPS)-stimulated macrophages derived from wild-type,
MyD88 knockout (KO), TRIF KO, and MyD88/TRIF double
KO mice. We employed a statistical approach to determine
the importance of the commonality and specificity of mIRNA
binding sites among groups of temporally co-regulated
genes. We demonstrate that both commonality and specif-
icity are irrelevant to define a priori groups of co-down-
regulated genes. In addition, analyzing the various ex-
perimental conditions, we suggest that miRNA regulation
may not only be a late-phase process (after transcription)
but can also occur even early (1h) after stimulation in knock-
out conditions. This further indicates the existence of dy-
namic interactions between miRNA and signaling mole-
cules/transcription factor regulation; this is another proof
for the need of shifting from a ‘hard-wired’ paradigm of gene
regulation to a dynamical one in which the gene co-regu-
lation is established on a case-by-case basis.
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Introduction

Recognition of lipopolysaccharide (LPS) by Toll-like
receptor (TLR) 4 of macrophages triggers the innate
immune response by activating transcription factors such
as NF-kB and AP-l, resulting in the induction of large
numbers of genes, predominantly those that encode
proinflammatory cytokines (Hirotani et al., 2005). Although
transcriptional activation and resultant gene expression
studies have been performed in the innate immune
system, the discovery of microRNAs (miRNA) adds a layer
of complexity for the understanding of overall biclogical
regulation.

miRNA are approximately 20-25-nucleotide, small
RNAs that bind to the 3-untranslated region (3-UTR) of
messenger RNA (mRNA) in the cytoplasm, and either
negatively regulate the expression of the mRNA or repress
translation into the corresponding protein (Bartel, 2004).
Extensive studies on miRNAs during the last few years
(Lai, 2002; Bagga et al.,2005; Lim, 2005; Baskerville et al.,
2005; Taganov et al., 2006; Sood et al., 2006 ) have made
possible the discovery of hundreds of miRNAS. This has
resulted in the development of databases of MiRNA target
predictions in 3-UTR regions of mRNAs (Lewis et al.,
2003; Lai, 2004; Krek et al., 2005; Bentwich et al., 2005;
Grin et al., 2005; Rajewsky, 2006), facilitating high-
throughput analysis, such as the design of gene regulatory
networks in terms of shared miRNAs (Shalgi et al., 2007;
Tsang et al., 2007).

One of the chief goals in analyzing innate immune
signaling is to discover co-regulated genes using mRNA
expression data. It has been mostly assumed that similar
patterns in temporal MRNA expression profiles usually
suggest possessing common transcription factors (Yeo et
al., 2007). We performed a similar analysis on the basis
of post-transcriptional miRNA regulation of co-regulated
genes. If miRNA-based regulation has a major role in the
establishment of gene regulatory circuits, we expect the
temporally co-regulated genes to share a higher proportion
of common miRNA binding sites than we would expect by
chance. To test this hypothesis, we focused on the temporal
mMRNA expression profiles of wild-type macrophages during
LPS stimulation, paying particular attention to the profiles
of downregulated genes, since miRNAs negatively regulate
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Fig. 1. The three profiles used to define downregulated genes.
This classification allows us to distinguish various dynamic
downregulation profiles by miRNAs. Classification is done
according to time after stimulation; 1) 0-1 his considered early
downregulation profile (EDR), 2) 1-4 h, late downregulation
profile (LDR) and 3) 04 h, overall downregulation profile (ODR).
The downregulated genes show a 2-fold or more decrease in
expression level for all profiles.

mRNA expression (Fig. 1) (Lim et al., 2005).

We developed two criteria to check the validity of this
hypothesis: 1) the number of common miRNA binding sites
shared by a group of temporally co-regulated genes; ie,
the commonality of miRNA binding sites, and 2) the
number of genes that are targeted by a specific miRNAin
a group of temporally co-regulated genes; ie, the specificity
of miRNA binding sites. We performed statistical analyses
by comparing the commonality and specificity scores in
groups of co-downregulated genes with the same measures
relative to groups of randomly-chosen genes. We showed
that both commonality and specificity are low and are not
especially higher for groups of co-downregulated genes
when compared with groups of random genes. This result
indicates that both commonality and specificity are not
significant features to define groups of a priori co-downre-
gulated genes, and that miRNA regulation is not a hard-
wired counterpart of effective functional regulation circuits
in cells and can adapt dynamically to external stimuli.
Further analysis of single knockout conditions revealed
that miRNA regulation may be involved not only at late
phases (after transcription) but also at early times. Our
result suggests that 1) miRNA regulation in wild-type
conditions is repressed at early times in order not to
interfere with the response to stimuli, and 2) the interplay

between miRNA and signaling molecules/transcription
factor regulation exists from early signaling processes.

Materials and Methods

Experiments and Microarray dataset

We utilized microarray data obtained from time-series
experiments (0, 1, and 4 h) performed on peritoneal
macrophages from wild-type, MyD88", TRIF", and
MyD88’ TRIF” mice treated with 100 ng/ml LPS (Salmonella
minnesota Re595, Sigma). Affymetrix mouse expression
array A430 microarray chips were used for gene expression
detection. The microarray dataset obtained from these
experiments contains expression levels for 22690 Affymetrix
probe set IDs, for a total of 12 expression level measurements.
The experimental details can be found in Hirotani et al., 2005.

Databases

We used the Pictar database (http:/pictar.bio.nyu.edu) for
target predictions of mouse miRNAs based on conservation
in mammals (human, chimpanzee, mouse, rat, and dog)
(Baskerville et al., 2005). The Pictar database uses
algorithms in sequences and evolutionarily-conserved data
among vertebrate miRNA target predictions to determine
to their reliability. The initial dataset of MIRNAs contains
264 different miRNAs.

Selection of initial list of genes

Refseq RNA IDs are used as genes identifiers. As one
Refseq RNA ID can correspond to one or more Affymetrix
IDs, the expression level of one gene is the highest
Affymetrix expression row of Affymetrix expressions in
microarray dataset corresponding to the same Refseq
RNA IDs. Only genes having at least one miRNA binding
site were considered. Unlike previous studies (Hirotani et
al., 2005), in which only genes having a signaling intensity
of more than 100 points in expression level were considered,
in our study we are also considering expression changes
for genes showing relatively low expression levels, as the
previous threshold may hide many important processes.
As a result, we obtained a list of 2969 genes for the analysis.

Co-downregulated genes

As miRNAs are known to be negative regulators of mMRNA
(Lim et al., 2005), for our study, we focused on genes
showing a decrease in temporal expression levels
characterized by one of the following three expression
profiles: 1) early downregulation profile (EDR) defined by
a 2-fold decrease in expression level between 0 and 1 h,
2) late downregulation profile (LDR) between 1 and 4 h,



and 3) overall downregulation profile (ODR) between 0 and
4 h (Fig. 1) for each experimental condition (wild-type,
MyD88 KO, TRIF KO, or double KO). For each of these
profiles (EDR, LDR, and ODR), we selected gene pairs
exhaustively and calculated their temporal expression
Pearson correlation coefficient, taking the n genes (n =5,
10, 15,...40) that have the highest correlations. Among the
identified group of genes, we eliminated repeating groups,
that is, groups that contain more than 80% the same genes.

To check whether co-regulated genes share a higher
proportion of common miRNA binding sites, we defined
commonality and specificity scores:

Commonality score
For each group of n genes, we ean extract p pairs of genes:

p=20 (1)

For each pair of genes, we computed the commonality

score by taking the ratio of the number of mMIRNA binding

sites shared by both genes to the total number of miRNA
binding sites in both genes:

No. of miRNA binding
sites shared by both genes

Total no. of miRNA binding sites (2)
in both genes

Commonalitypair =

By averaging the ratios of all the pairs, we defined the
average miRNA binding sites sharing ratio for the group:

Commonality g, =

1 )
;Ez=11 (3)

Specificity score

Itis possible that commonality scores can be low for genes
that possess a large number of miRNA binding sites. To
avoid this case, we defined a measure for the sharing of
specific mIRNA binding sites in co-regulated gene pairs,
called the specificity score.

For each group of n genes, we calculated the specificity
score for each individual miRNA binding site:

No. of genes in the grouphaving

Specificityyindimngsie =__specific miRNA binding site )

n

We next defined the Maximum miRNA Binding Site
Specificity Score (MMBSS) to represent group score,
which is the specificity score of the most highly-represented
miRNA binding sites among a group of genes:
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SpeCifiCitygVoup = max(speCi/iCitybinding Si/e) (5)

Statistical Significance

To check for eventual statistically significant differences
between randomly chosen gene groups (control) made by
all the couples from n genes (n =5 to 40) and test groups
(eg, EDR) with the same numerosity, we carried out
commonality and specificity computations and checked
for 95% confidence interval. To determine significant
differences between the two populations, we further
performed t-test on the populations made by control and
test groups.

Results and Discussion

We evaluated commonality and specificity scores for the
three profiles of early downregulated genes (EDR), late
downregulated genes (LDR), and overall downregulated
genes (ODR), and found surprisingly both commonality
and specificity scores were very low. The commonality
score was approximately 2% and the specificity score was
on average about 25% (since we are using only one miRNA
with the highest MMBSS, 25% can be considered very
low). These scores are similar to those relative to randomly
selected genes (Fig. 2A and Fig. 3). This result indicates
that the sharing of miRNA binding sites (static view) is not
a suitable criterion to identify dynamically co-regulated
genes. We also observe, from Fig. 2A, that the commonality
score of EDR, regardless of the number of genes in each
group, is always lower than randomly-selected genes, and
scores of LDR and ODR are always higher. In randomly-
selected genes, we expect the group to contain a mixture
of both miRNA-regulated and -unregulated genes. Hence,
focusing on the lower commonality scores of EDR
compared with randomly-selected genes, this could be
due to two possible scenarios: 1) miRNA regulation is not
active at early time points (0-1 h), or 2) miRNAs in the EDR
group of genes are suppressed by signaling molecules
such as transcription factors (Fig. 4).

In order to further evaluate these two hypotheses, we
investigated the commonality score for other conditions
(TRIF KO, MyD88 KO, MyD88/TRIF DKO conditions, Fig.
2). If miRNA does not possess early regulation (0-1 h), the
commonality score of EDR is not expected to change.
However, looking firstly at the TRIF KO (Fig. 2B), we notice
that the commonality score of genes showing an EDR
profile was increased. In addition, the commonality score
for LDR was reduced, showing the reverse trend from
wild-type conditions. This could imply that miRNA regulation
has increased at early times and decreased at later times,
suggesting that under wild-type conditions, TRIF-dependent
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Fig. 2. Commonality scores for all profiles, in wild-type and KO conditions, for various group sizes of co-regulated genes. Each curve represents
the average commonality score of groups of 77co-downregulated genes and groups of /7randomly-chosen genes (/7varying from 5 to 40)
for wild-type, MyD88 KO, TRIF KO, and MyD88/TRIF DKO conditions. Downregulated genes show at least a 2 fold decreasein expression
level. Random population is constituted of 100 groups of randomly-selected genes. Groups of genes share less than 80% common genes.
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Fig. 3. Maximum specificity scores for all profiles in wild-type conditions for various group sizes of co-regulated genes. Each curve
represents the average maximum specificity score of groups of /7 co-downregulated genes and groups of n randomly-chosen
genes, for 1 varying from 5 to 40, for wild-type conditions. The same settings (80% overlap threshold, 2-fold decrease for
co-downregulated genes, population of 100 groups for random genes) are used here, as in Fig. 2.
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Fig. 4. Schematic representation of the possible interactions
between MyD88 /TRIF-dependent pathways and miRNAs. In
innate immune responses, Toll-like Receptor 4 (TLR4) is
activated by LPS (1), and triggers MyD88- and TRIF-dependent
signaling pathways (2), which in turn activate transcription factors
that control gene expression. These transcription factors may also
repress MiRNA genes at early time points (3a, 3b), and activate
miRNA genes later time points (4), to dynamically control
miRNA-mediated gene silencing (5).

pathways are 1) suppressing early miRNA regulation (0-1
h), and 2) activating late miRNA regulation (Fig. 4).

For MyD88 KO conditions, we observed, compared
with wild-type conditions, that the commonality scores
showed that EDR profiles are similar to that of LDR profiles
(Fig. 2C). The increase of EDR and ODR compared with
random genes at early time points for MyD88 KO
conditions suggests that MyD88-dependent pathways are
repressing miRNA genes at early times. Analyzing
MyD88/TRIF DKO conditions confirms that disabling both
pathways removes miRNA regulation, since EDR is similar
to random genes, and LDR and ODR profites are lower
compared with random genes (Fig. 2D).

Conclusion

We have shown that miRNA sharing among temporally
co-regulated genes is low, indicating that miRNA regulatory
processes are not hard-wired. Our result demonstrates that
approaches that use static miRNA binding sites to suggest
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miRNA regulatory processes is clearly not sufficient.
Moreover, analyzing various experimental conditions in
innate immunity, we suggest that miRNA regulation may
not only be involved at late phases (after transcription) but
also at early times upon cellular stimulation. This last point
may suggest the existence of dynamic interactions
between miRNA and signaling molecules/transcription
factor regulation and will be investigated next (Piras et al,
in preparation).
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