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Abstract

The current existing literature offers little guidance on how
to decide which method to use to analyze one-channel
microarray measurements when dealing with large,
grouped samples. Most previous methods have focused
on two-channe! data;therefore they can not be easily
applied to one-channel microarray data. Thus, a more
reliable method is required to determine an appropriate
combination of individual basic processing steps for a
given dataset in order to improve the validity of one-
channel expression data analysis. We address key issues
in evaluating the effectiveness of basic statistical processing
steps of microarray data that can affect the final outcome of
gene expression analysis without focusingon the intrinsic
data underlying biological interpretation.
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Introduction

Chronic fatigue syndrome (CFS)is known to be a complex
disease related with several genes. In order to identify
differentially-expressed genes, a large gene expression
dataset was obtained using a one-channel microarray
experiment conducted on 173 patients. The patients were
classified into five groups of CFS, and 20,160 genes were
represented. Unlike the usual microarray experiment, this
study contained a very large number of slides. Unfortunately,
however, our preliminary analysis yielded few significant
genes differentially expressed among the five groups. This
result was quite surprising, because 173 patients would be
regarded as quite a large sample size in a typicalmicroarray
experiment. Thus, we expect that the significant gene
effect is quite moderate. Recently, microarray data
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interpretation has been mainly focused on the comparisons
between the high density oligonucleotide-based chip and
two-channel cDNA microarrays (Bolstad et al., 2003;
Edwards 2003; Futschik et al., 2004; Cui et al., 2003; Smyth
et al., 2003). Current literature offers little guidance on how
to decide which method to use or how to compare different
methods to obtain final results. These effects are most
problematic, especially for one-channel microarray
measurements when dealing with large, grouped samples
(Edwards, 2003). In this paper, we focus on the effect of data
processing on the interpretation of gene expression data for
a one-channel microarray experiment when the gene effect
is not large. We focus on evaluating the effect of
normalization methods in identifying differentially-expressed
genes.

Materials and Methods

Chronic fatigue syndrome (CFS) dataset

We analyzed a large gene expression dataset obtained
from a one-channel oligonuclectide experiment conducted
on 173 patients who were dlassified into five groups of chronic
fatigue syndrome, and 20160 genes were represented. The
data in this study describe CFS that has no diagnostic
clinical signs. It is unclear if CFS represents a single iliness
(whistler et al., 2005). The samples were classified into five
groups based on information from clinical consensus: 36
patients in the non-fatigued (NF) group, 46 patients in the
chronic fatigue syndrome (CFS) group, 47 patients in the
group labeled chronically fatigued but without CFS
because of an insufficient number of symptoms (ISF), 20
patients in the chronically fatigued but with ISF and a major
depressive disorder with melancholic features (ISF-MDDm)
group, and 19 patients with CFS with a major depressive
disorder with melancholic features (CFS-MDDm). The NF
group was defined as the control group, whereas the other
four groups were defined as case groups based on various
definitions of CFS. The final goal of the experiment was
to identify differentially-expressed for the group pairs:
control (NF) vs. case (all 4 groups);control (NF) vs case
(CFS);control (NF) vs case (CFS-MDDmy);control (NF) vs
case (ISF);control (NF) vs case (ISF-MDDm);control (NF)
vs case (ISF-MDDm+CFS-MDDm);and control (NF) vs.
case (ISF+CFS). Findings from our study will suggest
future studies needed to identify the underlying etiology of
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Fig. 1. Principal component analysis for each group. X-axis represent the scores of first principal component and Y-axis is the
one of second principal component In this figure, outlying points indicate the outlier slides. Each plot is the PC plot of CFS,

CFS-MDDM, ISF, ISF-MDDM, and NF groups.

chronic fatigue syndrome;the dataset used for this study
is not intended to focus on the intrinsic data underlying
biological interpretation.

Quality Control Analysis and Outlier Detection

The first processing step is outlier detection, and we
performed several methods to examine outlying slides.
Fig. 1 is the result of the principal component analysis for
the five groups, which identifies distinct outlying slides
visually. We observed that samples 11 from the CFS-MDD
group and 1 from the ISF group were separated from the
dense group and could be classified as outlying slides. In
addition, we examined slides with unusual expression
patterns or large variability through diagnostic plots (Park
et al., 2005). These outlying slides tend to have large impacts
on analyses such as the identification of differentially-
expressed genes. Therefore, we applied graphical methods

to detect outlying sample slides. With this measure of quality
control, we were able to compare variahility among slides
of samples and minimize the amount of errors made in
statistical data preparation of one-channel microarray
data. Fig. 2 is the diagnostic plot for detecting outlying
slides. The plot shows that slides 11, 162, and 158 seemed
to have quite different patterns from those of other slides.
Slide 11 was also identified by principal component
analysis, showing a very clearly distinctive pattern from
those of other slides. In order to evaluate the effect of the
outlier slides, we performed leave-one out analysis.
Finally, we used the dataset, removing these three outlier
slides (slides 11, 162, and 158), for further analysis.

Normalization

The plot in Fig. 3 is the boxplot of the original intensity data
from five individual sample groups before normalization. We
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Fig. 2. Quality control plot for detecting outlying sample slides. (a) shows that slides 11, 162, and 158 seem to have quite different
patterns from those of other slides. Slide 11 was also identified by principal component analysis to have a very clearly distinctive
pattern from those of other slides. We used the dataset after removing these outlier samples (slide 11,162,158) for further analysis.
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Fig. 3. Boxplot for raw data of each group and group-level plot (before normalization)
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Fig. 4. Group-level plot showing the effect of normalization. (a) shows the pattern of the 25th, 50th, and 75th quantiles of raw data
from 173 slides. (b) is the pattern of the 25th, 50th, and 75th quantiles of LOWESS-normalized data. (c) is the pattern of the 25th,

50th, and 75th quantiles of quantile-normalized data.

performed the normalization process for each of the five
individual sample groups as examined in Fig. 3. The first
plot in Fig. 4 is the group-level plot for these raw data,
showing the 25th, 50th, and 75th percentile for each
sample of the five groups. The x-axis represents the slide,
and the y-axis represents quartiles of the actual intensities.
This group-level plot allows us to investigate group-
specific variations within the data. The group-level plot
clearly showed different levels of expression data for the
different sample groups. The next processing step was the
normalization procedure performed by Quantile, LOWESS,
and IQR scale normalization methods (Yang et al., 2002;
Irizarry et al 2003; Li ef al., 2003).

Quantile normalization
The goal of the quantile method is to make the distribution
of probe intensities for each array in a set of arrays the
same.

Let ¢,= (gy....q,) fork=1, ...,p be the vector of the
kth quantiles for all n arrays. ¢.= (g, ....q,)and

d= \/1,1 \}_)Iet be the unit diagonal. To transform the

quantiles so that they all lie along the diagonal, consider
the projection of ¢ onto d:

Proj,q; :(lqu\]"“’lzqkj)
n =1 n =

This implies that we can give each array the same
distribution by taking the mean quantile and substitute it
as the value of the data item in the original dataset. This
motivates the following algorithm for normalizing a set of
data vectors by giving them the same distribution:

1. Given n arrays of length p, form Y of dimension p x

nwhere each array is a column.
2. Sort each column of X to give Ysor.

3. Take the means across rows of Ysrand assign this
mean to each element in the rowtoget v’ ,

4. Get Ynormaiizes DY rearranging each columnof ¥,
to have the same ordering as original Y.

LOWESS normalization

Another approach is LOWESS normalization based on an
Myversus A plot, where Mis the difference in log expression
values and A is the average of the log expression values.
To normalize two arrays with one-channel intensity, it is
straightforward to adapt the approach proposed by Yang
et al. (2001) for correcting dye bias in two-channel data,
as follows. Let the log intensities from the two arrays be
Yi=(yh v ..oyb), V2= (43,45 -y Consider the plot of
M= Y'— Y? against A= Y'+ ¥?, which corresponds to a
clockwise rotation of the (¥’, ¥?) plot by 45 degrees
followed by rescaling and fit a locally weighted smooth
regression (loess) f(A) to these (M, A) data. The
adjustment consists of replacing ¥' by ' = ¥'—f(4)/2
and Y? by V=Y?—f(4)/2. Bolstad et al. (2003)
extended this method to a series of k arrays, with data in
theform Y, ¥2,.., Y'*. However, rather than being applied
to two-color channels on the same array, it was applied to
sample intensities from two arrays at a time. Because this
method works in a pairwise manner, it is somewhat time
consuming (Li et al.,2001).

IQR (interquartile range normalization)
Let Y be the j-th probe intensity from ith slide. The IQR
normalization procedure is as follows (Park ef af, 2005):

max(/QR (¥, ))

Y,‘\,’nrm — {x — med(x/)}
g i J IQR,»(Y;/ )

+ max {med (¥,)}

where med,( ;;)is the median of j-th gene across all slides.
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Fig. 4 summarizes the plots after applying these
normalization methods. Fig. 4 shows the different effects
of normalization methods. Fig 4(a) shows the patterns of
the 25th, 50th, and 75th quantiles of raw data from 170
slides. Fig 4(b) and Fig 4(c) show the pattern of each of
the 25th, 50th, and 75th quantiles of LOWESS- normalized
data and quantile-normalized data. In the next section, we
show that these normalization methods produce quite
different results for identifying differentially-expressed genes.

Results and Discussion

Table 1 is the summary table for comparing different
normalization methods regarding their effects on the
identification of differentially-expressed genes. It shows
the estimated number of significant genes for different
group pairs. The simplest statistical method for detecting
differential expression is the t-test for identifying differentially-
regulated genes between group pairs from 5 groups,
whereas the analysis of variance (ANOVA) test was

Table1. The number of significant genes dependson normalization methods

'Normalizat-ic_)n methéas -

IQR scale

( Siginificance level a=0.05) Raw data Quantile Lowess
Anova 5 groups 0 1 0 6
T-test Control(NF) vs Case (4 groups) 0 0 1 1
Control(NF) vs Case(CFS) 0 0 0 0
Control(NF) vs Case (CFS-MDDm) 15 1 6 1
Control(NF) vs Case (ISF) 0 0 0 0
Control(NF) vs Case (ISF-MDDm) 0 2 3 0
Control(NF) vs Case (ISF,CFS-MDDm) 2 4 0 0
[\lsci)gr?igl(':é?wté%nl é?/zfgof; 1) Raw data IQR scale Quantile Lowess
Anova 5 groups 0 1 1 10
T-test Control(NF) vs Case (4 groups) 0 0 2 1
Control(NF) vs Case (CFS) 0 0 0 0
Control(NF) vs Case (CFS-MDDm) - 122 2 20 26
Control(NF) vs Case (ISF) 0 0 0 0
Control{NF) vs Case {ISF-MDDm) 6 63 3 1
Control(NF) vs Case (ISF,CFS-MDDm) 3 11 0 16
CFS vs NF ( Lowess-Normalization) CFS vs NF ( Quantile-Normalization)
o
-9

©
[N
[~

Fold change

(a) LOWESS normalization

Fold change

(b) Quantile normalization

Fig. 5. Volcano plot for fold-change analysis after both LOWESS and quantile normalization
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applied to identify differentially-regulated genes for the five
groups in Table 1. We also applied some widely-used
methods for testing differential expression among genes
starting with the simple fold-change criteria using the
volcano plot, which can evaluate both the direction and the
size of an effect using intensity ratios and log-transformed
p-values simultaneously. Fig. 5(a) shows that the volcano
plot for LOWESS normalization comparing CFS and NF
yielded asymmetric fold-change distributions, and more
genes appeared to be upregulated than downregulated due
to the differences of these two group-levels, whereas quantile
nomalization (Fig. 5(b)) produced approximately symmetric
distributions. We expected approximately the same
number of up- and downregulated genes. Table 1 showed
that the estimated number of regulated genes in each
group comparison depended on the normalization
methods used. We did not see any clear difference in these
data to determine which normalization method is more
appropriate for finding regulated genes. We began
analyzing the original data (raw data) without applying
normalization methods and then compared those results
with other normalization methods. The effect was most
pronounced in the comparison between NF and CFS-
MDDm, depending on the normalization method. We
address key issues in evaluating the effectiveness of basic
statistical processing steps of microarray data that can
affect the final outcome of gene expression analysis that
is not intended to focus on the intrinsic data underlying
biological interpretation in this study. We presented some
normalization methods and showed that different norma-
lization methods yield different results. Most previous
normalization methods have focused on two-channel or
Affymetrix-type data;therefore they are not easily applied to
our one-channel microarray data. Due to this reason, it is
necessary that some modifications and slight adaptation
be applied to this kind of data to have reasonable results
in further studies. The use of quality measures for
analyzing individual outcomes can help in estimating the
reliability of final microarray study results. In particular, the
study presented here showed that when the gene effect is
not as large as in our example, microarray data normalization
and individual processing steps have an important effect on
the final outcome,especially for the identification of
differentially-expressed genes. In further studies, we may
consider the effects of normalization methods when the gene
effectis large. It is important to test different possibilities and
analyze the effects of normalization with the appropriate
tools for individual processing steps. Thus, a more reliable
method is required to determine an appropriate combination
of individual basic processing steps for a given dataset in
order to improve the validity of one-channel expression data
analysis. Therefore, the overview of these effects is

essential for the biological interpretation of gene expression
measurements.
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