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Abstract

Microarray technology enables us to measure the expression
of tens of thousands of genes simultaneously under various
experimental conditions. Clustering analysis is one of the
most successful methods for analyzing microarray data using
the assumption that co-expressed genes may be co-regulated.
It is important to extract meaningful clusters from a long
unordered list of clusters and to evaluate the functional
homogeneity and heterogeneity of clusters. Many quality
measures for clustering results have been suggested in
different conditions. In the present study, we consider
biological pathways as a collection of biological knowledge
and used them as a reference for measuring the quality of
clustering results and functional homogeneities. PathTalk
visualizes and evaluates functional relationships between
gene clusters and biological pathways.
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Introduction

Microarray expression data are incessantly accumulated
with the aid of recent technological advances. It is widely
believed that biologically meaningful interpretations can
be extracted from these large-scale data using suitable
and well-organized methods of analysis. Clustering
analysis is one of the most prominent methods to analyze
microarray data. It explores the internal structure of
complex data by organizing them into meaningful groups
or gene sets. Genes of a similar expression profile may
share similar functions; clustering a gene-expression
profile can be used for tentative assignment of functional
annotation of the unknown genes based on the functional
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annotations of the known genes (Eisen et al., 1998;
Tamayo et al., 1999; Ben-Dor et al., 1999; Sharan and
Shamir, 2000; Sharan et al., 2003)

In microarray data analysis, extracting meaningful
gene-expression clusters is important because the
following steps often rely on the quality of the clustering
result. it is also important to measure the functional
homogeneity of the clusters (or gene sets) from the results.

Quality measures for gene-expression clusters have
been proposed in a variety of conditions. Assuming that
the true (i.e., the gold standard) clustering solution is
known, one can use the Minkowski measure (Sokal, 1977)
or the Jaccard coefficient to compare the quality of different
results. When the true solution is not known, there is no
best measure of the quality of the result. Some have
evaluated clustering results in terms of intra-cluster
homogeneity using within-group similarity of gene-expression
profiles only (Hansen and Jaumard, 1997; Sharan et al.,
2003; Yeung et al., 2001). Others evaluated clustering
results based on other biological knowledge. Gat-Viks et
al. (2003) suggested a statistical measure according to
prior biological knowledge, and Gibbons et al. proposed
a way of judging the quality of clustered data by evaluating
the mutual information between one gene's membership
in a cluster and the attributes it possesses, given the
annotation from the Saccharomyces Genome Database
(Gibbons et al., 2002).

Biological pathways are regarded as one of the most
valuable collections of molecular biological knowledge,
providing key information about the organization of
biological systems. Therefore, it is natural to consider
biclogical pathway information as a valuable resource for
measuring the quality of clusters and/or the degree of
homogeneity of a duster. We first created a pathway-by-pathway
similarity matrix by calculating the co-membership of
genes between each pair of pathways. We then created
a reference pathway map by using a multi-dimensional
scaling method. This map represents a universal topological
structure of genes and pathways independent of the
experimental condition in which a microarray dataset is
obtained, and hence it can be used as a reliable frame of
reference to evaluate cluster quality and homogeneity.
Gene-gene or pathway-pathway association in a given
microarray experiment may differ from conditions to
conditions. Mapping dataset-specific clustering results
onto a universal pathway map may help to understand the



PathTalk: Interpretation of Microarray Gene-expression Clusters in Association with Biological Pathways 125

underlying context of a microarray experiment. PathTalk
is a web-enabled software package visualizing the
reference pathway map onto which the relationship of
gene-expression clusters are mapped and analyzed in
terms of clustering quality and homogeneity.

Methods

Creating a reference pathway map

We collected 471 human biological pathways from the
ArrayXPath knowledgebase (Chung et al., 2003; Chung
et al., 2004), integrating pathway information from a variety
of biological resources, including the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa et al., 2004),
GenMAPP (Dahlquist et al., 2002), BioCarta (http://www.
biocarta.com), and PharGKB Pathways. A pathway
similarity matrix was created by calculating the following
equation for each pair of pathways P; and Pa:

(P Py) = |Gy N Gyl
stm\ P, Py) = 1G’1UG'2|’
where G and G; are gene sets in the pathways Py and P,
respectively. Since this similarity table is independent of
individual experimental conditions, it can be used as a
reference map to measure clustering results.

Using the classical MDS (multi-dimensional scaling)
algorithm, which minimizes the topological distortion, we
can visualize a pathway map on 2-dimensional space. We
also created a network of the pathways, representing
pathway cross-talks. We defined the degree of link
between a pair of pathway as the number of shared genes.
When two pathways are regarded as linked if they share
more than 3 genes, the whole network produces 92
connected components, including one giant component of
size 374, 6 double-ton components, and 85 singletons.

Fig.1 shows a pathway cross-talk map on 2-dimensional
space, where small circles represent a pathway, the color

Fig. 1. Pathway cross-talk. Circles represent pathways, colors of the circles represent the sources of the pathways (red
for KEGG, yellow for BioCarta, green for GenMAPP and blue for PharmGKB), and the lines joining two pathways represent
those pathways sharing more than three genes. The two distinct structures in the upper right and in the lower left sides
of the reference map represent the cytoplasmic and nuclear components, respectively (see method).
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of a circle represents the source of the pathways (red for
KEGG, yellow for BioCarta, green for GenMAPP, and blue
for PharmGKB), and the line joining two pathways
represents that the two pathways share more than 3 genes.
Interestingly, the red KEGG circles seemed to be
separately clustered from the yellow BioCarta circles,
representing the separation of metabolic and signaling
pathways in a cellular system. We named them as the
cytoplasmic and the nuclear components, respectively.
For each given clustering result, we visualized
associated pathways on the cross-talk map of Fig. 1.

Measuring pathway-homogeneity

In this subsection, we suggest a method to measure the
homogeneity of a given gene set based on the topology of
biological pathways. First, for a given gene set G, we define
Ps by a set of pathway p such that p is significantly related
with the gene set G. The Fisher's exact test is used to
calculate the statistical significance. The pathway-homogeneity
Hom(G) of a gene set G is defined by

1 > sim(p, p")

Hom(G)=Hom(P,)=
¢ |PG|(|PG|—1)/2[7./J'€PG

We also define the p-value of the measure of a gene set,
G, by the relative frequency of random homogeneity
Hom(G") being bigger than Hom(G). Here the gene set G’
is taken randomly more than 1,000 times, having the same
size of G. We here recall that a clustering resultis a list of
gene sets. PathTalk provides a table of two indices of each
gene set for the clustering result and hence provides a
guide to select more informative gene sets for the following
analysis. We use the average of pathway-homogeneities
for the measure of clustering quality.

Outlier problem and dumbbell problem

In the definition of pathway-homogeneity, the gene space
was transformed into pathway space. Thus, it is needed
to overcome the classical problems in clustering algorithms
like the outliers and the dumbbell-shaped cluster problem
in the pathway space. For the outlier problem, we define
a singletone index S/(G) of a gene set by the following
procedure

1) Define dist(p, Pg) by

dist(p,F;) = Zl—sim(p,p’)

p'Ep.p'efs

1
|PG|_1

2) Let p* be the pathway which maximize the dist(p, Ps)

3) Define SI(G) by

Hom(F; - {p*})

S1G)= Hom(F;)

We define a dumbbell index DI(G) of a gene set by the
following procedure:

1) Let pi* and p2* be the pathways that maximize dist(p-,
p2), where dist(p1, p2) = 1 — sim(p1, p2)

2) Divide Pginto Py and P, such that pis in Py if dist(p, p1*)
< dist(p, p2*) and p is in P, if disf(p, p+*) > dist(p, p=")

3) Define DI(G) by

Hom(B,B) _ (R |-Hom(R)+|F,|-Hom(B))/| F; |
Hom(P,) Hom(P,)

DI(G) =

Results and Discussion

We used a human Hela cell-cycle dataset containing 2252
genes. We clustered the gene expression vectors into 10
clusters for the evaluation of the clustering result. This
clustering result was input to PathTalk. The distribution of
each cluster is shown in Table 1. Fig. 2 shows a qualitative
visualization of homogeneities for 10 clusters, and Fig. 3
shows guantitative pathway-homogeneities and p-values
of 10 clusters. '

Table 1 and Figs. 2 and 3 are the example output of
PathTalk. Any clustering result written in usual tab-delimited
text file can be an input of PathTalk.

Table 2 shows that clusters 1 and 9 have outlier pathways.
The outlier pathways are related to two genes in each cluster.
Table 2 suggests that it may return better clustering results
to split cluster 1 into two sub-clusters with sizes 7 and 10,
respectively, and cluster 3into two sub-ciusters of sizes 257

Table 1. Distribution of genes and their associated pathways of
10 clusters in the human Hela cell dataset.

Custer D 1 2 3 4 5 6 7 8 9 10
#(genes) 17 342 288 283 231 392 243 272 21 163
#pathway) 5 233 231 238 144 257 194 205 12 153

Table 2. !solated genes and dumbbell index of 10 clusters in
human Hela cell data

Ciuster D 1 2 3 4 5 6 7 8 9 10

SIG) 16 10 10 10 10 10 10 10 14 10
outiergenes 2 0 ©0 0 O O O O 2 O
DI(G) 22 11 14 12 12 11 12 11 10 10
|P4) 7 115 257 172 180 190 121 133 11 45
|P2| 10 227 31 111 51 202 122 139 10 118
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Fig. 2. Clusters superimposed on pathway cross-talk reference map. For the purpose of illustration, we
highlighted the members of cluster 7 in bright green edges and those of cluster 9 in purple edges. Both
clusters demonstrate good clustering of the member genes mapped onto the pathway space. Moreover,
the two clusters are clearly separated even within the small area of left lower nuclear component composed
mainly of BioCarta yellow circles.
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Fig. 3. Pathway-homogeneities and p-values of the 10 clusters in human Hel.a cell dataset.
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and 31.

In the present study, we developed PathTalk, which
provides visualization and evaluation of the structural
association among gene-expression clusters and biological
pathways. PathTalk helps to extract high quality clusters for
improved further analysis of gene-expression microarray
data by visualizing the reference pathway map and systematic
comparison of the clustering results.

Acknowledgements

This study was supported by a grant from Korea Health 21
R&D Project (A040163), and H.J.’s educational training was
supported by a grant from the Korean Pharmacogenomics
Research Network (A030001), Ministry of Health and
Welfare, Republic of Korea.

References

Ben-Dor, A., Shamir, R., Yakhini, Z. (1999). Clustering gene
expression patterns. J. Comput. Biol. 6, 281-297.

Chung, H.J., Kim, M., Park, C.H., and Kim, J.H. (2004).
ArrayXPath: mapping and visualizing microarray gene
expression data with integrated pathway resources using
Scalable Vector Graphics. Nucleic Acids Research
1;32:WA60-W464.

Chung, H.J., Park, C.H., Han, M.R,, Lee, S., Ohn, J.H., Kim,
J., Kim, J., and Kim, J.H. (2005). ArrayXPath II: mapping
and visualizing microarray gene expression data with
biomedical ontologies and integrated pathway resources
using Scalable Vector Graphics. Nucleic Acids Research
1,33:W621-W626.

Dahlquist, K.D., Salomonis, N., Vranizan, K., Lawlor, S.C,,
and Conklin, B.R. (2002). GenMAPP, a new tool for
viewing and analyzing microarray data on biological
pathways. Nature Genet. 31, 19-20.

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D.

{(1998). Clustering analysis and display of genome-wide
expression patterns. Proc. Natl. Acad. Sci. USA 95,
14863-14868.

Gat-Viks, |., Sharan, R., Shamir, R. (2003). Scoring clustering
solution by their biological relevance, Bioinformatics 19,
2381-2389.

Gibbons, F.D. and Roth F.P., (2002). Judging the Quality of
Gene Expression-Based Clustering Methods Using Gene
Annotation. Genome Research 12, 1574-1581.

Hansen, P. and Jaumard, B. (1997). Cluster analysis and
mathematical programming. Math. Program. 79, 191-215.

Sharan, R., Maron-Katz, A., and Shamir, R. (2003). Click and
expander: a system for clustering and visualizing gene
expression data. Bioinformatics 19, 1787-1799.

Sharan, R. and Shamir, R. (2000). CLICK: a clustering
algorithm with applications to gene expression analysis.
In Proceedings of the Eighth International Conference on
Intelligent Systems for Molecular Biology (ISMB) 307-316.

Sokal, R.R. (1977). Clustering and classification: background
and current directions. In Van Ryzin,J. (ed.), Classification
and Clustering. Academic Press, London, pp. 1-15.

Spellman, P.T., Sherlack, G., Zhang, H.Q., lyer, V.R,, Andres,
K., Eisen, M.B., Brown, P.Q., Botstein, D., and Futcher, B.
(1998). Comprehensive identification of cell cycle-regulated
genes of the yeast Saccharomyces cerevisiae by
microarray hybridization. Mol. Biol. Cell 9, 3273-3297.

Stephanopoulos, G., Hwang, D., Schmitt, W., Misra, J., and
Stephanopoulos, G. (2002). Mapping physiological states
frorm microarray expression measurments. Bioinformatics
18, 1054-1063.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S.,
Dmitrovsky, E., Lander, E.S., Golub, T. (1999). Interpreting
patterns of gene expression with self-organizing maps:
methods and application to hematopoietic differentiation.
Proc. Natl Acad. Sci. USA 96, 2907-2912.

Yeung, K., Haynor, D., and Ruzzo, W. (2001). Validating
clustering for gene expression data. Bioinformatics 17,
309-318.



