DOI QR코드

DOI QR Code

Effects of Supplemental Agents Enhancing Calcium Absorption on Bioavailability of Starfish Calcium in Rats

흰쥐에서 불가사리칼슘의 체내이용성에 대한 칼슘흡수증진물질의 첨가 효과

  • Moon, Ji-Young (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Jang, Soo-Jung (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Mi-Na (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Hee-Yeon (Biotechnology Research Center NFRDI) ;
  • Lee, Yeon-Sook (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • 문지영 (서울대학교 식품영양학과, 생활과학연구소) ;
  • 장수정 (서울대학교 식품영양학과, 생활과학연구소) ;
  • 박미나 (서울대학교 식품영양학과, 생활과학연구소) ;
  • 박희연 (국립수산과학원 생명공학연구소) ;
  • 이연숙 (서울대학교 식품영양학과, 생활과학연구소)
  • Published : 2007.07.30

Abstract

This study was conducted to investigate the bioavailability of starfish calcium with substances enhancing calcium absorption. Three week-old young female rats (Sprague-Barley) were divided into 5 groups according to calcium sources and testing agents; calcium carbonate (C), starfish calcium (S), starfish calcium + casein phosphopeptide (S-CPP), starfish calcium+citrate-malate (S-CM), starfish calcium+isoflavone (S-ISO), and were fed experimental diets containing AIN-93G based Ca (0.35% w/w) diet with CPP, CM and ISO for 6 weeks. Blood, femur, urine and feces samples were collected. There was no significant difference among groups in terms of growth and food intake. Serum Ca concentrations were normal in all 5 groups. Serum P concentrations and ALP activities were not significantly different among groups. Ca absorption and retention were significantly increased both in S-CPP and S-CM groups compared to C group (p<0.05). p absorption was significantly higher in S-CPP group than in other groups. While the amount of soluble Ca of intestinal contents did not differ among groups, the amount of insoluble Ca was significantly lower in S-CPP, S-CM and S-ISO groups than in C and S groups. However, the weight, Ca and P concentrations of femur were not significantly different among groups. These results suggest that the addition of CPP and citrate-malate were more effective for enhancing the bioavailability, intestinal absorption and solubility of starfish calcium.

본 연구는 불가사리에서 추출한 칼슘의 체내 이용성 및 칼슘 흡수증진 물질 첨가가 불가사리 칼슘의 이용성에 미치는 영향을 검토함으로써 새로운 칼슘 급원으로서의 불가사리 칼슘의 유용성을 알아보고자, 동물실험을 수행하였다. 즉 3주령 된 암컷 흰쥐를 대상으로, 불가사리에서 추출한 칼슘에 칼슘흡수증진 물질로서 casein phosphopeptide(CPP;5.25%), citrate-malate(1.4%), isoflavone(0.01%)을 각각 첨가한 식이를 6주간 공급한 후, 불가사리 칼슘의 이용성에 미치는 효과를 알아보았다. 이 때 칼슘 수준은 0.35%로, 인 수준은 0.7%로 각각 고정시켰다. 희생을 통하여 혈청 칼슘과 인 농도 및 alkaline phosphatase(ALP) 활성, 칼슘과 인의 흡수율 및 보유율, 대퇴골의 칼슘 및 인 함량, 소장의 가용성 및 불용성 칼슘 함량을 측정하였다. 그 결과는 다음과 같다. 불가사리에서 추출한 칼슘에 칼슘흡수증진 물질을 첨가했을 경우, 성장 및 식이섭취량은 실험군 간에 차이가 없었다. 혈청 칼슘과 인 농도 및 ALP 활성은 실험군 간에 유의적인 차이가 없었다. 칼슘의 보유율과 겉보기 흡수율은 불가사리칼슘+CPP군과 불가사리칼슘+citrate-malate군이 높았다. 인의 보유율은 차이가 없었으나, 겉보기 흡수율은 불가사리칼슘+CPP군에서 높았다. 소장 내용물의 가용성 분획 중 칼슘 함량은 실험군 간 유의적인 차이가 없었다. 반면 불용성 분획의 칼슘 함량은 불가사리칼슘+CPP군, 불가사리칼슘+citrate-malate군 및 불가사리 칼슘+ISO군에서 유의적으로 낮았다. 식이로부터 유래된 장내 가용성 칼슘 함량은 불가사리칼슘+CPP군에서 가장 높았다. 대퇴골의 무게, 칼슘 및 인의 함량은 실험군 간에 유의적인 차이가 없었다. 이상의 결과에서 불가사리 칼슘은 흰쥐의 일반적인 성장 및 기능에 영향을 미치지 않으면서도 칼슘의 흡수율은 높아 새로운 칼슘급원으로서 이용가능성이 높음을 시사하였다. 그러나 대체로 골격 대사에는 영향을 미치지 못했다. 또한 칼슘흡수증진 물질을 첨가하였을 경우에 CPP와 citrate-malate가 불가사리칼슘의 흡수율을 높여, 불가사리칼슘에 CPP와 citrate-malate를 첨가할 경우 보다 좋은 효과가 기대된다.

Keywords

References

  1. Miller GD, Jarvis JK, McBean LD. 2001. The importance of meeting calcium needs with foods. J Am Coll Nutr 20(2 Suppl): 168S-185S https://doi.org/10.1080/07315724.2001.10719029
  2. Louie DS. 1996. Calcium and phosphorus in health and disease: Intestinal bioavailability and absorption of calcium CRC Press, Boca Raton. p 45
  3. Allen LH. 1982. Calcium bioavailability and absorption: a review. Am J Clin Nutr 35: 783-808 https://doi.org/10.1093/ajcn/35.4.783
  4. Greger JL, Gutkowski CM, Khazen RR. 1989. Interaction of lactose with calcium, magnesium and zinc in rats. J Nutr 119: 1691-1697 https://doi.org/10.1093/jn/119.11.1691
  5. Buchowski MS, Miller DD. 1991. Lactose, calcium source and age affect calcium bioavailability in rats. J Nutr 121: 1746-1754 https://doi.org/10.1093/jn/121.11.1746
  6. Lee YS, Noguchi T, Naito H. 1983. Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br J Nutr 49: 67-76 https://doi.org/10.1079/BJN19830012
  7. Sato R, Noguchi T, Naito H. 1986. Casein phosphopeptide (CPP) enhances calcium absorption from the ligand segment of rats small intestine. J Nutr Sci Vitaminol (Tokyo) 32: 67-76 https://doi.org/10.3177/jnsv.32.67
  8. Lee YS, Park G, Naito H. 1992. Supplemental effect of casein phosphopeptides (CPP) on the calcium balance of growing rats. Nippon Eiyo Shokuryo Gakkaishi 45: 333-338 https://doi.org/10.4327/jsnfs.45.333
  9. Lacour B, Tardivel S, Drueke T. 1997. Stimulation by citric acid of calcium and phosphorous bioavailability in rats fed a calcium-rich diet. Miner Electrolyte Metab 23: 79-87
  10. Arjmandi BH, Khalil DA, Hollis BW. 2000. Ipriflavone, a synthetic phytoestrogen, enhances intestinal calcium transport in vitro. Calcif Tissue Int 67: 225-229 https://doi.org/10.1007/s002230001123
  11. Lee YS, Moon JY, Jang SJ. 2005. Bioavailability of starfish calcium as a novel calcium source. Kor J Comm Liv Sci 16: 135-148
  12. Erba D, Ciappellano S, Testolin G. 2002. Effect of the ratio of casein phosphopeptides to calcium (w/w) on passive calcium transport in the distal small intestine of rats. Nutrition 18: 743-746 https://doi.org/10.1016/S0899-9007(02)00829-8
  13. Weaver CM, Martin BR, Costa NM, Saleeb FZ, Huth PJ. 2002. Absorption of calcium fumarate salts is equivalent to other calcium salts when measured in the rat model. J Agric Food Chem 50: 4974-4975 https://doi.org/10.1021/jf0200422
  14. Fiske CH, Subbarow Y. 1925. The colorimetric determination of phosphorus. J Biol Chem 66: 375-400
  15. Hyden S. 1956. A turbidimetric method for the determination of polyethylene glycols in biological materials. Lantbrukshoegsk Ann 22: 139-145
  16. Patwardhan UN, Pahuja DN, Samuel AM. 2001. Calcium bioavailability: an in vivo assessment. Nutr Res 21: 667-675 https://doi.org/10.1016/S0271-5317(01)00278-0
  17. Tsugawa N, Okano T, Higashino R, Kimura T, Oshio Y, Teraoka Y, Igarashi C, Ezawa I, Kobayashi T. 1995. Bioavailability of calcium from calcium carbonate, DL-calcium lactate, L-calcium lactate and powdered oyster shell calcium in vitamin D-deficient or -replete rats. Biol Pharm Bull 18: 677-682 https://doi.org/10.1248/bpb.18.677
  18. Tsuchita H, Goto T, Yonehara Y, Kuwata T. 1995. Calcium and phosphorus availability from casein phosphopeptides in male growing rats. Nutr Res 15: 1657-1667 https://doi.org/10.1016/0271-5317(95)02036-7
  19. Sato Y, Lee YS, Kimura S. 1998. Minimum effective dose of casein phosphopeptides (CPP) for enhancement of calcium absorption in growing rats. Int J Vitam Nutr Res 68: 335-340
  20. Mitruka BM, Rawnsley HM. 1981. Clinical biochemical and hematological reference values in normal experimental animals and normal humans. 2nd ed. Masson Publishing USA, Inc., New York. p 160-166
  21. Hamalainen MM. 1994. Bone repair in calcium deficient rats: comparison of xylitol+calcium carbonate with calcium carbonate, calcium lactate and calcium citrate on the repletion of calcium. J Nutr 124: 874-881
  22. Lee YS, Noguchi T, Naito H. 1980. Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. Br J Nutr 43: 457-467 https://doi.org/10.1079/BJN19800113
  23. Berrocal R, Chanton S, Juillerat MA, Pavillard B, Scherz JC, Jost R. 1989. Tryptic phosphopeptides from whole casein. II. Physicochemical properties related to the solubilization of calcium. J Dairy Res 56: 335-341 https://doi.org/10.1017/S0022029900028776
  24. Heaney RP, Sato Y, Orimo H. 1994. Effect of casein phosphopeptide on absorbability of co-ingested calcium normal postmenopausal women. J Bone Miner Metab 12: 77-81 https://doi.org/10.1007/BF02383413
  25. Pak CY, Harvey JA, Hsu MC. 1987. Enhanced calcium bioavailability from a solubilized form of calcium citrate. J Clin Endocrinol Metab 65: 801-805 https://doi.org/10.1210/jcem-65-4-801
  26. Miller JZ, Smith DL, Flora L, Slemenda C, Jiang XY, Johnston CC Jr. 1988. Calcium absorption from calcium carbonate and a new form of calcium (CCM) in healthy male and female adolescents. Am J Clin Nutr 48: 1291- 1294 https://doi.org/10.1093/ajcn/48.5.1291
  27. Sakhaee K, Bhuket T, Adams-Huert B, Rao DS. 1999. Meta-analysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am J Ther 6: 313-321 https://doi.org/10.1097/00045391-199911000-00005
  28. Nicar MJ, Pak CYC. 1985. Calcium availability from carbonate and calcium citrate. J Clin Endocrinol Metab 61:391-393 https://doi.org/10.1210/jcem-61-2-391
  29. Harvey JA, Kenny P, Poindexter J, Pak CY. 1990. Superior calcium absorption from calcium citrate than calcium carbonate using external forearm counting. J Am Coll Nutr 9: 583-587 https://doi.org/10.1080/07315724.1990.10720413
  30. Sheikh MS, Santa Ana CA, Nicar MJ, Schiller LR, Fordtran JS. 1987. Gastrointestinal absorption of calcium from milk and calcium salts. N Engl J Med 317: 532-536 https://doi.org/10.1056/NEJM198708273170903
  31. Heaney RP, Recker RR, Weaver CM. 1990. Absorbability of calcium sources: the limited role of solubility. Calcif Tissue Int 46: 300-304 https://doi.org/10.1007/BF02563819
  32. Arjmandi BH, Khalil DA, Hollis BW. 2000. Ipriflavone, a synthetic phytoestrogen, enhances intestinal calcium transport in vitro. Calcif Tissue Int 67: 225-229 https://doi.org/10.1007/s002230001123
  33. Arjmandi BH, Khalil DA, Hollis BW. 2002. Soy protein: its effects on intestinal calcium transport, serum vitamin D, and insulin-like growth factor-I in ovariectomized rats. Calcif Tissue Int 70: 483-487 https://doi.org/10.1007/s00223-001-1100-4
  34. Tsuchita H, Goto T, Shimizu T, Yonehara Y, Kuwata T. 1996. Dietary casein phosphopeptides prevent bone loss in aged ovariectomized rats. J Nutr 126: 86-93 https://doi.org/10.1093/jn/126.1.86
  35. Scholz-Ahrens KE, Kopra N, Barth CA. 1990. Effect of casein phosphopeptides on utilization of calcium in minipigs and vitamin-D-deficient rats. Z Ernahrungswiss 29: 295- 298 https://doi.org/10.1007/BF02023086

Cited by

  1. Physiochemical Characteristics of Calcium Supplement Manufactured using Starfish vol.19, pp.5, 2012, https://doi.org/10.11002/kjfp.2012.19.5.727
  2. Effect of acidic electrolyzed water on the quality improvement of boiled-dried anchovy vol.21, pp.3, 2014, https://doi.org/10.11002/kjfp.2014.21.3.357