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Histone Lysine Methylation
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Our genome exists in the form of chromatin, and its structural organization should be precisely regu-
lated with an appropriate dynamic nature for life. The basic unit of chromatin is a nucleosome, which
consists of a histone octamer. These nucleosomal histones are subject to various covalent mod-
ifications, one of which is methylation on certain lysine residues. Recent studies in histone biology
identified many histone lysine methyltransferases (HKMTs) responsible for respective lysine residues
and uncovered various kinds of involved chromatin associating proteins and many related epigenetic
phenotypes. With the aid of highly precise experimental tools, multi-disciplinary approaches have
widened our understanding of how lysine methylation functions in diverse epigenetic processes
though detailed mechanisms remain elusive. Still being considered as a relatively more stable mark
than other modifications, the recent discovery of lysine demethylases will confer more flexibility on
epigenetic memory transmitted through histone lysine methylation. In this review, advances that have
been recently observed in epigenetic phenotypes related with histone lysine methylation and the en-
zymes for depositing and removing the methyl .mark are provided.
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Introduction

Metazoans, especially at the high end of evolution (e.g.
mammals), comprise various tissues of specialized cells.
The lineage specificities of various tissues established dur-
ing development are stably retained over mitosis through-
out the lifetime with individually distinct sets of proteins
being expressed. However, individual cells in an organism
originate from a single fertilized cell having homogeneous
genome sequence with the exception of mature immunocytes.
Therefore, to generate and maintain different cell types in
a multicellular organism, other mode of heritable in-
formation code than DNA sequence is required that dic-
tates tissue-specific transcriptional profiles, respectively.
The modality that transmits this heritable information not
based on a DNA sequence is collectively termed epigenetic
machinery, which appears to operate mostly through a lo-
cal or global structure of chromatin [31,51].

Now, it has been clearly shown that the eukaryotic ge-
nome is organized into a nucleoprotein structure called
chromatin that consists of DNA and associated proteins.
The observed level of chromatin folding varies, producing
two morphologically distinct structures — dark hetero-
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chromatin of low gene density and light euchromatin of
high gene density. The realization of genome organization
as such naturally introduced a new and very daunting task
for DNA-based processes, such as transcription, replication,
recombination and repair, to occur the accessibility of the
DNA code embedded in the chromatin structure by related
protein complexes of huge size. This fact reveals the dy-
namic nature of chromatin not just as a storage system for
being condensed to fit within the nucleus, but it also ne-
cessitates the existence of new instruments to flexibly re-
model it in response to given circumstances and signals.
Furthermore, sculpturing a differential chromatin structure
for each specific cell type seems to be the most reasonable
and probable strategy for metazoans to choose for generat-
ing distinct readouts from the same genome. This con-
ception is no longer a story based on guesswork, and it is
certainly proved to exist though still much is needed to
understand the concrete picture [67]. Data accumulated
over the last two decades have strongly indicated that ge-
nome organization occurs through a well-planned global
and local manner and successfully defined several im-
plementing tools for chromatin remodeling [14,52,55].
Among them, DNA methylation [5,20] and post-transla-
tional modifications of histone proteins [44,69] are well
chased up to this moment.

Although reported in the mid 1960s [1], it is only within
the last decade when multiple modifications of histone



proteins and their seminal roles in many biological proc-
esses have been clearly appreciated at the molecular level.
In the early 1990s, the biological role of histone covalent
modifications was invigorated [58,60], and ensuing ex-
perimental efforts successfully uncovered various mod-
ifications, such as acetylation, methylation, phosphor-
ylation, ubiquitination, sumoylation, and so on. These his-
tone covalent marks appear to act in a sequential and in-
terdependent manner and seem to be read in a combinato-
rial manner as an encrypted ‘histone code’ that enables
downstream effectors to sense and execute a variety of dis-
crete signals [12,17,53,59].

In this review, advances that have been recently ob-
served in epigenetic phenotypes related with histone lysine
methylation and the enzymes for depositing and removing
the methyl mark are provided.

Histones and necleosome

The primary repeating unit of chromatin was elec-
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tron-microscopically detected, biochemically analyzed and
termed as a ‘nucleosome’ in the 1970s [21,35]. The crys-
tallographic approach determined the structure of a nucle-
osome core particle that consists of an octameric histone
assembly around which 147 base pairs of DNA are wrap-
ped in 1.65 superhelix turns. The nucleosome core is com-
posed of two copies each of H2A, H2B, H3 and H4 [26].
As illustrated in Fig. 1, histone folds and histone fold ex-
tensions form a globular region that resides within the
confines of the DNA superhelix while histone tails extend
outward, becoming subject to covalent modifications.

Although core histone proteins, due to their biological
significance, are highly conserved during evolution, most
organisms have multiple histone gene copies, some of
which produce meaningful histone variants (esp. H2A and
H3 variants) [29,30]. It was then elucidated that these var-
iants substitute for one or more canonical core histones, al-
tering the nucleosome structure, and thus shifting local or
wide chromatin regions into different states [19,45].
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Fig. 1. Histone proteins and nucleosome core particles. (A) The four histone proteins, H2A, H2B, H3 and H4, are schematically
drawn to near scale. Solid boxes represent g helices of histone fold, while open boxes and arrows depict ¢ helices and
B strands of histone fold extensions, respectively. Dotted lines are histone tails. (B) A nucleosome core particle is pro-
jected through the superhelical axis. This figure is adapted from Luger et al.[26]. (C) A nucleosome is viewed in the same
orientation as in B. The histone core tails, where various covalent modifications occur, are illustrated as if being linear
structures to give a simple and clear image. This figure is adapted from Wolffe and Hayes [68].
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Histone lysine methyltransferases

With one exception - Dotl family [11], HKMTs contain
a SET (Suppressor-Enhancer-Trithorax) domain of about
130 amino acids that transfers a methyl group from S-ad-
enosyl-L-methionine to the e-amino group of a lysine resi-
due (Fig. 2). This domain was recognized as a conserved
sequence among chromatin regulators ranging from yeast
to mammals and takes its name from three D. mela-
nogaster proteins: 1) a modifier of position-effect varie-
gation (PEV), suppressor of variegation 3-9 (Su(var}3-9), 2)

polycomb group regulator, enhancer of zeste (E(z)), 3) ho-
meotic gene regulator trithorax (Trx) [18]. HKMTs are
sub-classified into several families with similar substrate
specificities based on sequence motifs surrounding the SET
domain [8].

In Fig. 3, the well-studied lysine methylation sites on H3
and H4 are presented along with known responsible
HKMTs. When methylated, each lysine residue can interact
respectively with methyl-lysine binding domains such as
chromodomain [3], tudor domain [16] and WDA40-repeat
domain [70]. For correct coupling between methyl marks
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Fig. 2. Protein sequence alignment of the SET domains. All seven SET domains are from human HKMTs that are selected to
represent individual subgroups (cf. Fig. 3). Conserved amino acids are shaded in graded mode from the higher con-
servation in denser background to the lesser in light background. Numbers right after the protein identities are locations

of the SET domains in respective proteins.
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Fig. 3. Histone 3 and 4 with their detailed N-terminal tails. Amino acid sequences of the N-terminal tails are drawn along with
HKMTs responsible for each lysine residue. The number below indicates the location of each lysine residue. Mammalian
HKMTs are written in black bold font inside the rectangles, while HKMTs from yeast or Drosophila are in gray italic
outside the boxes. K76 is located in a globular region (L1 means loop 1). Besides the lysine locations shown above, other
lysine residues are known to be methylated with their possible functions being under scrutiny.



and corresponding domains, not only location but also ex-
act methylation states matter at least in some cases [25,70].
Unlike acetylation that largely correlates with transcrip-
tional activation, methylation can trigger both activation
and repression signals. In general, methylation at H3K4,
H3K36 and H3K79 is associated with transcriptionally ac-
tive chromatin, whereas methylation at H3K9, H3K27 and
H4K?20 is associated with inactive chromatin [50], yet new
findings start to increase complexity to this generality
[747,62].

Below are abridged representative epigenetic con-
sequences instructed by histone lysine methylation.

Constitutive heterochromatin formation

Heterochromatin, such as centromere, is biologically im-
portant [38], and over time, related genes for hetero-
chromatin formation were found through genetic studies
in many model organisms. Among these genes, SUV39
family members were the first ones shown to have HKMT
activity, founding the role of histone lysine methylation as
an alphabet to write ‘histone code’ [41]. Since then, in vari-
ous species, SUV39 family HKMTs have been reported to
regulate the formation of constitutive heterochromatin by
H3K9 methylation, which then recruits HP1 (heferochro-
matin protein 1) [22,36,37]; however, the molecular events
downstream of HPI still remain vague. The mechanism to
target Clrd (cryptic locus regulator, a HKMT homologous
to SUV39 in S. pombe) in the first place has been defined
in the fission yeast where siRNA machinery guides the ini-
tial recruitment of Clr4 to sites of heterochromatin {32,63);
however, evidence is still insecure that corroborates a sim-
ilar mechanism in mammals. Once anchored to methylated
H3K9, HP-1 (Chp-1 in case of S. pombe beside Swib) can
amplify the process by interacting with another SUV39
through a chromoshadow domain. SUV39 HKMT activity
is required prior to H4K20 methylation (by SUV4-20 family
HKMT) that is also known to be necessary for mammalian
heterochromatin formation [46] (Fig. 4).

One more thing to note is a trend in methylation status
that pericentric heterochromatin is enriched in trimethyl-
H3K9 and H4K20 while euchromatin is abundant in mono-
or dimethyl forms. The latter methylation pattern can con-
tribute to gene-specific silencing in mammalian euchroma-
tin where G9 and GYa-related protein{(GLP) serve as
HKMTs on H3K9 [54] in addition to other HKMTs such as
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Fig. 4. Heterochromatin formation. The low half of the scheme
(drawn in light gray) has been demonstrated in S.
pombe where siRNAs play crucial roles. siRNAs are
generated from repeated sequences within hetero-
chromatin-to-be by RNA polymerase II and Dicer. They
are then loaded onto the RITS complex(RNA-induced
transcriptional silencing), which moves to target re-
gions where, in fission yeast, RITS recruits a H3K9
methyltransferases (Clr4) of the yeast. In mammals, evi-
dence is yet decisive for this mechanism. However, it
is clear that Suv3%h, when recruited by any means,
methylates H3K9 and that HP1 binds to methylated
H3K9. Also, HP1 can directly interact with another
Suv3%h through the chromoshadow domain, so accel-
erating further the gathering of Suv3%h to contiguous
regions.

SUV3%hl, 2. With regard to HP1 isoforms, both HP1, and
HP1g localize to pericentric heterochromatin, whereas
HP1y localizes to euchromatin [10].

Hox gene silencing

Genetic studies in D. melanogaster discovered Hox
genes, the highly conserved class of pattern-forming genes
that determine the positions of structures and appendages
along the anterior-posterior axis. Mutations in Hox genes
turn one body segment into the other identity. However,
besides Hox gene mutants, similar phenotypes derailed in
the developmental process were observed in various mu-
tants of other genes, which were later shown to participate
in Hox gene regulation. These comprehensive genetic stud-
ies in Hox regulators led to the discovery of two chroma-
tin modifying complexes - polycomb and trithorax group
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proteins (PcG and TrxG). Since then, the regulation of Hox
genes has become a prototype of PcG mediated gene si-
lencing that is counterbalanced by TrxG proteins [43]. Now
PcG proteins are known to orchestrate many epigenetic
cell memory systems by recording transcriptional re-
sponses of genes triggered by transient developmental
signals.

PcG proteins can be subdivided into two distinct poly-
comb repressor complexes (PRC1 and PRC2) despite some
differences in their components depending on cell types
and purifying conditions. As the first step, PRC-2 is
thought to get hauled to the PcG responsive element (PRE)
by Pho (Pleihomeotic), a DNA binding protein. PRC2 con-
tains E(Z), which together with ESC (Extra sex combs) and
SU(Z)12, methylates H3K27 and possibly also H3K9. Next,
one PRC1 component, Pc (polycomb), seems to bring PRCL
into place by interacting with trimethylated H3K27 through
its chromodomain. Then another PRC1 component, dRING
ubiquitylates H2AK119, finally leads to gene repression
through a presently ill-defined process (Fig. 5). HDAC ac-
tivity reported to associate with both complexes is not al-

ways consistent.

Fig. 5. PcG-mediated silencing at Hox genes. DNA binding
proteins, such as Pho and Pho-L, bind to PRE and re-
cruit PRC2, which methylates H3K27. Pc in PRC1 rec-
ognizes and binds to methylated H3K27. Another com-
ponent in PRC1, dRING moves along and catalyzes
H2AK119 ubiquitination, which seems to be a major
mark leading to PcG-mediated silencing.

Very recently, the involvement of PcG proteins in epi-
genetic profiling was scrutinized in both murine and hu-
man ES cells that, because of their pluripotency and
self-renewal, have become an ideal and most alluring mod-
el system where regulation of development- or differ-
entiation-specific genes can be analyzed in many aspects.
In those studies, an unusual combination of epigenetic
modification - acetylation of H3K9 and methylation of
H3K4 with trimethylation of H3K27 - was observed at
many genes related to differentiation where PcG proteins
locate accordingly. Consistent with this, when embryonic
ectoderm deficient (EED), a component of murine EZH2
complex, is missing, the differentiation-specific genes turn
on along with a loss of H3K27 methylation. Based on what
was referred to as a ‘bivalent chromatin structure’, contain-
ing both active and repressive epigenetic marks, the dy-
namic role of PcG proteins was proposed. That is, PcG
proteins in ES cells restrain differentiation-related genes
that already have pro-active epigenetic marks. When ES
cells are put under appropriate induction signals, PcG pro-
teins dissociate from the target genes. As a result, becom-
ing unleashed from inactive methyl mark (H3K27), differ-
entiation-related genes turn on and drive ES cell di-
fferentiation. Employing a genome-wise approach, they al-
so enlisted a wealth of potential target genes that would
hint at the way of PcG recruiting near target sites. More
interestingly, OCT4, SOX2 and NANOG that have
well-proven roles important in pluripotency and self-re-
newal are found at many PcG binding sites. All the data
taken together, it looks clear that evolutionally conserved
PcG signaling machinery regulates a special set of mam-
malian developmental genes to help ES cells stay pluri-
potent or differentiate [2,4,6,23].

On the other hand, TrxG is a heterogenous set of pro-
teins, among which TRX and ASHI1 have H3K4 HKMT ac-
tivity, and inhibit PRC mediated repression probably at
several steps, thereby helping Hox genes stay active.

X inactivation

Dosage compensation of the X chromosome in mammals
is achieved by inactivation of one X chromosome. This in-
activation can be divided into two separate classes - im-
printed X inactivation and random X inactivation. Early in
mouse development, imprinted X inactivation, in which

the paternal chromosome is inactivated, occurs in all cells



of the embryo. Then the paternal X chromosome remains
silenced in extra-embryonic tissues while X inactivation is
reversed in the cells that form the embryo proper.
Subsequently, X inactivation is randomly re-established in
these cells on either the maternal or paternal X chromo-
some [1528,34]. For this inactivation to occur, Xist, a
non-coding RNA expressed from the X inactivation center,
coats the entire inactive X chromosome (Xi) and introduces
EZH2 and PRCI complexes to the Xi during the initiation
stage of both imprinted and random X inactivation [9,39]
(Fig. 6). Accordingly was observed a concurrent appear-
ance of H3K27 methylation. H2AK119 ubiquitination on Xi
and EED are required especially in the maintenance of im-
printed X inactivation [64].

The instrumentation of EED and non-coding RNA to in-
duce chromatin silencing seems to be a commonality be-
tween X inactivation and imprinting a subset of genes ex-
cept that different kinds of non-coding RNAs are em-
ployed in individual cases [24,27,61].
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Fig. 6. X inactivation. Xist RNAs are transcribed from the X
inactivation center and coat the Xi-to-be. The EZH2
complex is thought to be recruited by Xist RNA, meth-
ylating H3K27. Coincident with H3K27 methylation,
Ringla/b (E3 ligases) approach, which leads to
H2AK119 ubiquitination. Both types of histone mod-
ifications stay only during the initiation phase, and it is
still a mystery how H3K27 methylation and H2AK119
ubiquitination contribute to the X chromosome
inactivation.
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Transcriptional activation

The major framework of gene-specific transcriptional ac-
tivation mediated by histone lysine methylation was built
in yeast studies [49]. The current understanding is as
follows. First, H2BK123 is
Rad6/Brel that seems to be loaded by gene-specific DNA
binding transcription factors. This ubiquitination facilitates
recruitment of methyltransferases for H3K4 (Set-1) and
H3K79 (Dotl). Then Ubp8 with SAGA approaches and re-
moves the ubiquitin from H2BK123 so facilitating H3K36
methylation by Set-2. One thing to note is that though
Set-1 and Set-2 physically interact with CTD of RNA poly-
merase II through phosphorylated S-5 and S-2 respectively,

mono-ubiquitinated by

Set-2 remains associated with RNA polymerase II through-
out the body of transcribed genes, suggesting its role in
different steps of transcription than Set-1 (Fig. 7). Similar
machinery looks to be working in multicellular organisms,
details are yet to come.

H3K4, when methylated, becomes capable of binding to
its discrete effectors in the same manner as H3K9 and
H3K27 [40,70], or vice versa - unable to interact with a
corepressor such as NuRD [71]. As for H3K79, it is known
that at least in mammals, the methylated form binds to
53BP1 then gets involved in DNA repair [16], and in S. cer-
evisiae, it is implicated in telomere silencing by expelling

Fig. 7. Histone lysine methylation and transcriptional activation.
Gene-specific activators bind to promoters and recruit
the Rad6/Brel complex, which ubiquitylates H2BK123.
Subsequently, Set-1 and Dot-1 move in and methylate
their target lysines (H3K4 and H3K79). Then Ubp$ in
SAGA detaches the ubiquitin, expediting H3K36 meth-
ylation by Set-2. Phosphorylation of S5 and S2 in the
CTID of RNA polymerase II and Paf-1 complex partic-
ipates in the assembly of the involved proteins and
their interactions.
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the Sir complex [33]. Details remain unrevealed as to how
methylations at H3K36 and H3K79 lead to transcription

activation.

Histone demethylases

Whereas histone modifications such as acetylation, phos-
phorylation and ubiquitination are clearly recognized as
reversible [17], until recently, histone methylation was
viewed so stable that this mark could be efficiently erased
only by displacement with unmethylated ones [42,65].
Timely LSD1 (lysine-specific demethylase 1) was eluci-
dated as the first enzyme that catalytically removes the
methyl group from histone lysine residues [48]. However,
since both a cofactor FAD and a protonated nitrogen are
required for LSD1 to demethylate target residues, this en-
zyme can only demethylate mono- or dimethylated lysines.
Very recently another class of demethylases that have the
Jumonji C domain in common began to be discovered
[13,56,57,66]. Given that these demethylases are considered
to be able to detach the methyl group from trimethyl-ly-
sine, now histone lysine methylation appears to be an en-
zymatically reversible modification in vivo. If it be under
our contro], histone lysine demethylation would be a pio-
neering process in epigenetic reprogramming.

Perspectives

Since many fabulous genetic studies already mapped
out many related genes in chromatin pathways and elabo-
rate deciphering of acetylation marks preceded right be-
forehand in the similar way, our understanding of bio-
logical functions regulated by histone lysine methylation
has been rapidly achieved within the past five years. Also,
it took no time to realize that the methyl marks work to-
gether with or against other histone covalent modifications.
At this moment, it seems quite clear that cross talks
(termed ‘histone code’) exist among these diverse post-
translational modifications, but it is not definite whether
this conceived cryptogram written in histone covalent
modifications is as exact and discretely corresponding as
the genetic code dictates specific amino acids by the com-
bination of three nucleotides from A, C, G and T. If so, in-
terpretation of the grammar to write histone code will be
a great discovery in biological science. Regardless of the
nature of the histone code, it will not be long before the

appalling progress in the chromatin field will beget a new
insight into how chromatin can adapt its shape for life to

live on.
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