Curdlan 복합 가식성 필름의 제조와 물성

Preparation and Physical Properties of Curdlan Composite Edible Films

  • 한윤정 (가톨릭대학교 식품영양학과) ;
  • 노희진 (동양제과 기술개발연구소) ;
  • 김석신 (가톨릭대학교 식품영양학과)
  • Han, Youn-Jeong (Department of Food Science and Nutrition, The Catholic University of Korea) ;
  • Roh, Hoe-Jin (Tong Yang Confectionery Co., R&D Center) ;
  • Kim, Suk-Shin (Department of Food Science and Nutrition, The Catholic University of Korea)
  • 발행 : 2007.04.30

초록

본 연구는 curdlan 복합필름을 제조하고 물성을 비교하기 위해 수행되었다. 우선 low set 방식과 high set 방식 중 적절한 방식을 선정하였고, 순차적으로 AMG나 oleic acid 중에서 적절한 방습소재를 선정하였으며, PB와 PIB 중에서 적절한 물성개량제를 선정하고자 하였다. 그 결과 high set 필름이 low set 필름보다 신장율은 다소 작지만 인장강도가 높고 수증기 투과도가 낮기 때문에 curdlan 복합필름 제조에는 high set 방법이 더 적합하며 이때 PEG는 2.0g 첨가하는 것이 유리할 것으로 판단하였다. 또한 oleic acid 첨가군이 AMG 첨가군보다 인장강도와 신장율이 더 크고, 수증기투과도는 더 낮은 편이며 특히 oleic acid 0.3g 첨가한 경우 신장율과 수증기 차단성 면에서 유리하므로 방습소재로서 oleic acid를 0.3g 첨가하는 것이 적합할 것을 판단하였다. PIB 첨가군이나 PB 첨가군 모두 인장강도와 수증기투과도는 비슷하나 신장율의 경우는 PIB 첨가군이 PB 첨가군보다 더 큰 것으로 나타났으므로 유연성과 관련된 물성개량 측면에서는 PIB 첨가가 더 유리할 것으로 판단하였다. 종합적으로 curdlan에 가소제 PEG와 방습소재 oleic acid와 물성개량제 PIB를 첨가하는 것이 유연성과 관련된 물성 면에서 가장 유리할 것으로 판단하였다.

In this study, we prepared curdlan composite films and determined their properties in order to select the most appropriate setting methods, moisture barrier materials, and viscoelasticity enhancing materials. High set curdlan films with polyethylene glycol (PEG) showed higher tensile strength and moisture barrier properties than low set films. Films with oleic acid as a moisture barrier material had greater tensile strength, elongation and moisture barrier properties than films with acetylated monoglyceride (AMG). Lastly, films using polyisobutylene (PIB) as a viscoelasticity enhancing material showed higher elongation than films with polybutene (PB).

키워드

참고문헌

  1. Jezequel V. Curdlan: A new functional ${\beta}$-glucan. Cereal Food World 43: 361-364 (1998)
  2. Takeda Technical Information. Curdlan Properties and Food Application. Takeda Chemical Industries, Ltd., Tokyo, Japan, pp. 1-19(2001)
  3. Funami T, Funami M, Yada H, Nakao Y. A rheological study on the effects of heating rate and dispersing method on the gelling characteristics of curdlan dispersions. Food Hydrocolloid 14: 509-518 (2000) https://doi.org/10.1016/S0268-005X(00)00031-X
  4. Funami T, Funami M, Yada H, Nakao Y. Rheological and thermal studies on gelling characteristics of curdlan. Food Hydrocolloid 13: 317-324 (1999) https://doi.org/10.1016/S0268-005X(99)00014-4
  5. Hirashima M, Takaya T, Nishinari K. DSC and rheological srudies on aqueous dispersions of curdlan. Thermochim. Acta 306: 109-114 (1997) https://doi.org/10.1016/S0040-6031(97)00310-9
  6. Tada T, Matsumoto T, Masuda T. Dynamic viscoelasticity and small-angle X-ray scattering studies on the gelation mechanism and network structure of curdlan gels. Carbohyd. Polym. 39: 53-59 (1999) https://doi.org/10.1016/S0144-8617(98)00157-X
  7. Zhang H, Huang L, Nishinari K, Watase M, Konno A. Thermal measurements of curdlan in aqueous suspension during gelation. Food Hydrocolloid 14: 121-124 (2000) https://doi.org/10.1016/S0268-005X(99)00056-9
  8. Nakata M, Kawaguchi T, Kodama Y, Konno A. Characterization of curdlan in aqueous sodium hydroxide. Polymer 39: 1475-1481 (1997) https://doi.org/10.1016/S0032-3861(97)00417-5
  9. Kim YT, Kim EH, Cheong C, Williams DL, Kim CW, Lim ST. Structural characterization of ${\beta}$-D(13,16)-linked glucans using NMR spectroscopy. Carbohyd. Res. 328: 331-341 (2000) https://doi.org/10.1016/S0008-6215(00)00105-1
  10. Renn DW. Purified curdlan and its hydroxyalkyl derivatives: preparation, properties and applications. Carbohyd. Polym. 33: 219-225 (1997) https://doi.org/10.1016/S0144-8617(97)00058-1
  11. Funami T, Yada H, Nakao Y. Thermal and rheological peoperties of curdlan gel in minced pork gel. Food Hydrocolloid 12: 55-64 (1998) https://doi.org/10.1016/S0268-005X(98)00045-9
  12. Kanke M, Katayama H, Nakamura M. Application of curdlan to controlled drug delivery. II. In vitro and in vivo drug release studies of theophylline-containing curdlan tablets. Biol. Pharm. Bull. 18: 1104-1108 (1995) https://doi.org/10.1248/bpb.18.1104
  13. Kanke M, Tanabe E, Katayama H, Koda Y, Yoshitomi H. Application of curdlan to controlled drug delivery. III. Drug release from sustained release suppositories in vitro. Biol. Pharm. Bull. 18: 1154-1158 (1995) https://doi.org/10.1248/bpb.18.1154
  14. Bair S. The high-pressure, high-shear stress rheology of polybutene. J. Non-Newton. Fluid 97: 53-65 (2001) https://doi.org/10.1016/S0377-0257(00)00197-X
  15. Choi HJ, Vinay III SJ, Jhon MS. Rheological properties of particle suspension in a polymer liquid. Polymer 40: 2869-2872 (1999) https://doi.org/10.1016/S0032-3861(98)00498-4
  16. van Nieuwkoop J, Muller von Czernicki MMO. Elongation and subsequent relaxation measunnents on dilute polyisobutylene solutions. J. Non-Newton. Fluid 67: 105-123 (1996) https://doi.org/10.1016/S0377-0257(96)01441-3
  17. Sawaguchi T, Seno M. Thermal degradation of polyisobutylene: effect of rotational motion around C-C bond on the ${\beta}$ scission leading to monomer formation. Polymer Degrad. Stabil. 54: 23-32 (1996) https://doi.org/10.1016/0141-3910(96)00104-8
  18. Grimbley MR, Lehrle RS. The thermal degradation mechanism of polyisobutylene. Part 1: comparison of results with statistical predictions provides a general interpretation of the mechanisms of decomposition. Polymer Degrad. Stabil. 49: 223-229 (1995) https://doi.org/10.1016/0141-3910(95)87003-2
  19. Sawaguchi T, Seno M. Effects of the molecular weight of molecular chains constituting the reaction medium on the thermal degradation of polyisobutylene. Polymer 39: 4249-4259 (1998) https://doi.org/10.1016/S0032-3861(97)10124-0
  20. Castle L, Nichol J, Gilbert J. Migration of polyisonutylene from polyethylene/polyisobutylene films into foods during domestic and microwave oven use. Food Addit. Contam. 9: 315-330 (1992) https://doi.org/10.1080/02652039209374077
  21. ASTM. Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA, USA (1989)
  22. ASTM. Standard methods for water vapor transmission of materials. Destination: E96-80. In: Annual Book of ASTM Standards. Philadelphia, PA, USA (1989)
  23. Salame M. Barrier polymers. pp. 48-54. In: The Wiley Encyclopedia of Packaging Technology. Bakker M (ed). John Wiley and Sons, New York, NY, USA. (1986)
  24. Taylor CC. Cellophane. pp. 159-163. In: The Wiley Encyclopedia of Packaging Technology. Bakker M (ed). John Wiley and Sons, New York, NY, USA. (1986)
  25. Turhan KN, Sahbaz F. Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. J. Food Eng. 61: 459-466 (2004) https://doi.org/10.1016/S0260-8774(03)00155-9
  26. Han YJ, Kim SS. Relationship between RVA properties and film physical properties of native corn starch and hydroxypropylated corn starch. Korean J. Food Sci. Technol. 34: 1023-1029 (2002)
  27. Srinivasaa PC, Rameshb MN, Tharanathan RN. Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloid 21: in press (2007)
  28. Maynes JR, Krochta JM. Properties of edible films from total milk protein. J. Food Sci. 59: 909-911 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb08155.x
  29. Gennadios A, Weller CL, Testin RF. Modification of physical and barrier properties of edible wheat gluten-based films. Cereal Chem. 70: 426-429 (1993)
  30. Ryu SY, Rhim JW, Kim SS. Preparation and physical properties of zein-coated high-amylose corn starch film. Lebensm. -Wiss. Technol. 35: 680-686 (2002) https://doi.org/10.1006/fstl.2002.0929