Physicochemical Properties of Whey Protein Isolate

WPI의 물리화학적 특성에 관한 연구

  • Ahn, Myung-Soo (Department of Food & Nutrition, Sungshin Women's University) ;
  • Kim, Chan-Hee (Department of Food & Nutrition, Sungshin Women's University)
  • 안명수 (성신여자대학교 생활과학대학 식품영양학과) ;
  • 김찬희 (성신여자대학교 생활과학대학 식품영양학과)
  • Published : 2007.02.28

Abstract

In this study, the physicochemical properties of cheese whey protein isolate (WPI) were measured. The total amount of amino acids in WPI was 89.5% and the proportion of essential amino acids was 44.6%. Among these, leucine, lysine, isoleucine, and valine were shown in large amounts. At various pHs, the solubility of WPI (82-88%) was higher than that of sodium caseinate, (5-79%). The solubility of WPI was not affected by variation of pH. It was shown that the emulsifying capacity of WPI was higher than that of egg yolk by 1.6 times, but the stabilities of emulsions made with WPI and egg yolk was almost same each other at 65-97% and 60-89%, respectively. The foaming capacity of WPI was higher than that of egg white, at 323.3% and 186.6%, respectively, but the foam stability of WPI was similar to that of egg white.

단백질을 식품의 원료로서 여러 가지 식품에 응용하려고 할때 제일 먼저 문제되는 것이 영양가이지만 동시에 물리화학적 특성도 식품 원료로서의 적합성을 결정하는데 중요한 요인이 되고 있다. 그런 면에서 유청(cheese whey)의 성분에서 단백질 함량을 90% 이상으로 농축 분리시킨 whey protein isolate(WPI)는 단백질 보충제로서 뿐만 아니라 다양한 물리화학적 특성을 가지고 있기 때문에 여러 가지의 가공식품에 이용할 수 있다고 사료된다. 따라서 본 실험에서는 WPI의 아미노산 함량, 용해성, 유화성, 기포성을 조사하여 식품의 기능성 원료 및 대체물로서의 이용 가능성을 알아보고자 하였다. WPI의 총 아미노산 함량은 89.5%였고 그 중에서 필수 아미노산 함량이 44.6%를 차지하였다. 필수 아미노산 중에서는 leucine, isoleucine, valine 등의 BCAA(branched chain amino acid) 함량이 높았다. pH에 따른 WPI의 용해성은 82-88%의 범위로 pH의 영향을 받지 않았고 유화용량은 302.7mL/g으로 난황의 187.0mL/g보다 높았으며 시간이 경과함에 따라 유화액의 이장량으로 측정한 유화안정성도 65-97%로 나타나 난황의 60-89%보다 안정함을 보였다. 기포형성력은 323.3%로 난백의 186.6%보다 약 2배 정도 높았고 시간이 경과함에 따라 남은 기포의 부피로 측정한 기포안정성은 85.9-97.7%로 난백의 84.8-95.3%와 유사하였다. 이상의 결과에서 WPI는 우수한 단백질 보충제로서 뿐만 아니라 용해성, 기포성, 유화성도 우수하게 나타났으므로 각종 가공식품의 품질향상에 영향을 주는 기능성 원료 및 대체물로서의 활용도가 매우 높을 것으로 사료된다.

Keywords

References

  1. Allum D. Recent developments in the utilization of whey. Cult. Dairy Prod. J. 16: 11-22 (1981)
  2. Morr CV. Whey protein concentrates and isolates-processing and functional properties. Crit. Rev. Food Sci. Nutr. 33: 431-476 (1993) https://doi.org/10.1080/10408399309527643
  3. Cho SJ, Hong YH. Physicochemical and functional properties of commercial whey powders. Korean J. Food Sci. Technol. 27: 151-155 (1995)
  4. Lagrange V. U.S. Whey proteins and new fractions and new fractions as ingredients in functional dairy products and innovative nutraceuticals. J. Korean Dairy Technol. Sci. 16: 106-118 (1998)
  5. Kim MS, Jeong Jl, Jeong YH. Amino acid composition of milled and brown rices. J. Korean Soc. Food Sci. Nutr. 32: 1385-1389 (2003) https://doi.org/10.3746/jkfn.2003.32.8.1385
  6. Yee GB, Yang JB, Ko MS. Food analysis. Yuhansa, Seoul, Korea. pp. 240-246 (2002)
  7. Choi HR, Sohn KH, Min SH. A study of the emulsifying properties of kidney bean protein isolate. Korean J. Soc. Food Sci. 5: 9-17 (1989)
  8. Lee SH. Effect of chitosan on emulsifying capacity of egg yolk. J. Korean Soc. Food Nutr. 25: 118-122 (1996)
  9. Phillips LG, German JB, Foegeding EA, Harwalkar A, Kilara BA, Lewis BA, Mangino ME, Morr CV, Regenstein JM, Smith DM, Kinsella JE. Standardized procedure for measuring foaming properties of three proteins, a collaborative study. J. Food Sci. 55: 1441-1450 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb03953.x
  10. Byun SM, Kim CJ. Functional properties of soy protein isolates prepared from defatted soybean meal. Korean J. Food Sci. Technol. 9: 123-130 (1977)
  11. Lee SW, Biological activity of whey proteins and peptides. J. Korean Dairy Technol. Sci. 19: 103-115 (2001)
  12. Blomstrand E, Hassmen P, Ekblom B, Neusholme E. Effect of branched amino acid supplementation on mental performance. Acta Physiol. Scand. 136: 473-481 (1991) https://doi.org/10.1111/j.1748-1716.1989.tb08689.x
  13. Davis JM. Carbohydrates, branched chain amino acids and endurance. lnt. Sport Nutr. 5: 29-39 (1995) https://doi.org/10.1123/ijsn.5.s1.s29
  14. Kim SH, Morr CV, Seo A, Surak JG. Effect of whey pretreatment of composition and functional properties of whey concentrate. J. Food Sci. 54: 25-32 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb08559.x
  15. Hwang JK, Kim YS, Pyun YR. Effect of protein and oil concentration on the emulsion stability of soy protein isolate. J. Korean Agr. Chem. Soc. 35: 457-461 (1992)
  16. Lee SH. Effect of chitosan on emulsifying capacity of egg yolk. J. Korean Soc. Food Nutr. 25: 118-122 (1996)
  17. Kim CT, Choi MJ, Hwang JK. Emulsion properties of casein-alginate mixtures. J. Korean Soc. Food Sci. Nutr. 26: 1102-1108 (1997)
  18. Marnett LF, Yenney RJ, Barry VD. Methods of producing soy fortified breads. Cereal Sci. Today 18: 38-43 (1973)
  19. Yun SJ, Jang MS. Sensory and instrumental characteristics of yackwa prepared by different amounts of egg yolk. Korea J. Soc. Food Sci. 17: 7-12 (2001)
  20. Krog N. Theoretical aspects of surfactants in relation to their use in breadmaking. Cereal Chem. 58: 158-164 (1981)
  21. No JS, Park EY Food emulsifier. Suseowon, Korea. pp. 24-31 (1996)
  22. Min SH, Shon KH. A study of the foaming properties of mung-bean protein isolate. Korean J. Soc. Food Sci. 4: 1-9 (1988)
  23. Kinsella JE. Functional properties of protein. Possible relationships between structure and function in foams. Food Chem. 7: 273-288 (1981) https://doi.org/10.1016/0308-8146(81)90033-9
  24. Sohn KH, Choi HS. The study on emulsifying and foaming properties of buckwheat protein isolate. Korean J. Soc. Food Sci. 9: 43-51 (1993)
  25. Narayama K, Narasinga MS. Functional properties of raw and heat processed winged bean flour. J. Food Sci. 47: 1534-1542 (1984) https://doi.org/10.1111/j.1365-2621.1982.tb04976.x