DOI QR코드

DOI QR Code

Ginsentology II: Chemical Structure-Biological Activity Relationship of Ginsenoside

  • Lee, Byung-Hwan (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
  • Published : 2007.06.30

Abstract

Since chemical structures of ginsenoside as active ingredient of Panax ginseng are known, accumulating evidence have shown that ginsenoside is one of bio-active ligands through the diverse physiological and pharmacological evaluations. Chemical structures of ginsenoside could be divided into three parts depending on diol or triol ginsenoside: Steroid- or cholesterol-like backbone structure, carbohydrate portions, which are attached at the carbon-3, -6 or -20, and aliphatic side chain coupled to the backbone structure at the carbon-20. Ginsenosides also exist as stereoisomer at the carbon-20. Bioactive ligands usually exhibit the their structure-function relationships. In ginsenosides, there is little known about the relationship of chemical structure and biological activity. Recent reports have shown that ginsenoside $Rg_3$, one of active ginsenosides, exhibits its differential physiological or pharmacological actions depending on its chemical structure. This review will show how ginsenoside $Rg_3$, as a model compound, is functionally coupled to voltage-gated ion channel or ligand-gated ion channel regulations in related with its chemical structure.

Keywords

References

  1. Tyler, V. E.: Herbal remedies. J Pharm Technol 11, 214-220 (1995) https://doi.org/10.1177/875512259501100510
  2. Nah, S. Y.: Ginseng; Recent advances and Trends. J. Ginseng Res. 21, 1-12 (1997)
  3. Lee, B. H., Jeong, S. M., Ha, T. S., Park, C. S., Lee, J. H., Kim, J. H., Kim, D. H., Han, J. S., Kim, H. C., Ko, S. R. and Nah, S.Y.: Ginsenosides regulate ligand-gated ion channels from the outside. Mol Cells. 18, 115-121 (2004)
  4. Shoji, J. Recent Advances in Ginseng Studies., pp. 11-31, Hirokawa Publishing, Tokyo (1990)
  5. Lee, B. H., Lee, J. H., Lee, S. M., Jeong, S. M., Yoon, I. S., Lee, J. H., Choi, S. H., Pyo, M. K., Rhim, H, Kim, H. C., Jang, C. G., Lee, B. C., Park, C. S. and Nah, S. Y.: Identification of ginsenoside interaction sites in $5-HT_{3A}$ receptors. Neuropharmacology., 52, 1139-1150 (2007) https://doi.org/10.1016/j.neuropharm.2006.12.001
  6. Jeong, S. M., Lee, J. H., Kim, J. H., Lee, B. H., Yoon, I. S., Lee, J. H., Kim, D. H., Rhim, H., Kim Y. and Nah, S. Y.: Stereospecificity of ginsenoside $Rg_3$ action on ion channels. Mol Cells. 18, 383-389 (2004)
  7. Lee, J. H., Jeong, S. M., Kim, J. H., Lee, B. H., Yoon, I. S., Lee, J. H., Choi, S. H., Kim, D. H., Rhim, H., Kim, S. S., Kim, J. I., Jang, C. G., Song, J. H. and Nah S. Y. : Characteristics of Ginsenoside $Rg_{3-}$Mediated Brain $Na^+$ Current Inhibition. Mol Pharmacol. 68, 1114-1126 (2005) https://doi.org/10.1124/mol.105.015115
  8. Rhim, H., Kim, H., Lee, D. Y., Oh, T. H. and Nah, S. Y.: Ginseng and ginsenoside $Rg_3$, a newly identified active ingredient of ginseng, modulate $Ca^{2+}$ channel currents in rat sensory neurons. Eur. J. Pharmacol. 436, 151-158 (2002) https://doi.org/10.1016/S0014-2999(01)01613-2
  9. Lee, B. H., Jeong, S. M., Lee, J. H., Kim, D. H., Kim, J. H., Kim, J. I., Shin, H. C., Lee, S. M. and Nah, S. Y.: Differential effect of ginsenoside metabolites on the $5-HT_{3A}$ receptor-mediated ion current in Xenopus oocytes. Mol. Cells 17, 51-56 (2004)
  10. Kim, J. H., Hong, Y. H., Lee, J. H., Kim, D. H., Nam, G., Jeong, S. M., Lee, B. H., Lee, S. M. and Nah, S. Y.: A role for the carbohydrate portion of ginsenoside $Rg_3$ in $Na^+$ channel inhibition. Mol Cells. 19, 137-142 (2005)
  11. Hille, B.: Ion channels of excitable membranes. Sinauer Associates Chapter 14, 462-470 (2001)
  12. Kang, D. I., Lee, J. Y., Yang, J. Y., Jeong, S. M., Lee, J. H., Nah, S. Y. and Kim, Y.: Evidence that the tertiary structure of 20(S)-ginsenoside $Rg_{3-}$ with tight hydrophobic packing near the chiral center is important for $Na^+$ channel regulation. Biochem Biophys Res Commun., 333, 1194-1201 (2005) https://doi.org/10.1016/j.bbrc.2005.06.026
  13. Kim, J. H., Lee, J. H., Jeong, S. M., Lee, B. H., Yoon, I. S., Lee, J. H., Choi, S. H. and Nah, S. Y.: Stereospecific effects of ginsenoside $Rg_{3-}$ epimers on swine coronary artery contractions. Biol Pharm Bull. 29, 365-370 (2006) https://doi.org/10.1248/bpb.29.365
  14. Qian, T., Cai, Z., Wong, R. N. S., Mak, N. K. and Jiang, Z. H.; In vivo rat metabolism and pharmacokinetic studies of ginsenoside $Rg_{3-}$. J. Chromatograph. B., 816, 223-232 (2005) https://doi.org/10.1016/j.jchromb.2004.11.036

Cited by

  1. Inhibitory mechanisms of dihydroginsenoside Rg3 in platelet aggregation: Critical roles of ERK2 and cAMP vol.60, pp.11, 2010, https://doi.org/10.1211/jpp.60.11.0015
  2. Roots: A Comparative Study vol.30, pp.2, 2014, https://doi.org/10.1080/87559129.2014.883631