DOI QR코드

DOI QR Code

전통 누룩으로부터 분리된 Killer Toxin 생산 균주 Pichia anomala K15의 특성

Characteristics of Pichia anomala K15 Producing Killer Toxin Isolated from Traditional Nuruk

  • 정희경 (대구신기술사업단 바이오산업지원센터) ;
  • 박치덕 (대구신기술사업단 바이오산업지원센터) ;
  • 이기동 (대구신기술사업단 바이오산업지원센터) ;
  • 박승춘 (경북대학교 수의과대학) ;
  • 박환희 (하향주가) ;
  • 홍주헌 (대구신기술사업단 바이오산업지원센터)
  • 발행 : 2007.08.30

초록

본 연구에서는 발효식품의 저장기간을 연장하거나 이상발효를 방지하기 위해 미생물 유래의 천연 항균성 물질인 killer toxin 생산 균주인 K3, K5, K11, K12, K15를 전통누룩으로부터 분리하였다. 분리된 killer toxin 생산 균주 중 식중독의 원인균인 Salmonella Typhimurium 및 장염비브리오의 원인균인 Vibrio parahaemolyticus의 생육을 저해하며, killer toxin 활성이 가장 우수한 K15를 최종 선발하고 이를 Biolog사 동정시스템과 ITS영역의 염기서열 homology를 조사하여 동정한 결과, Pichia anomala에 99% 상동성을 나타내어 Pichia anomala K15로 명명하였다. P. anomala K15가 생산하는 killer toxin은 단백질 분해효소에 의해 불활성화 되므로 인체에서 단백질 분해효소에 의해 쉽게 분해가 가능한 안전한 항균물질임을 확인할 수 있었다. 또한 p. anomala K15는 에탄올 내성은 약하나 고농도의 당에서 저항성이 크므로 주조 발효초기 환경에서의 이상발효를 방지할 수 있을 것으로 사료되어진다.

In this study, killer yeasts were isolated from traditional Nuruk to improve storage and suppress contaminant in food industry. Among killer yeasts, yeast K15 showed strong killer toxin activity and inhibited growth of Salmonella Typhimurium and Vibrio parahaemolyticus. Killer yeast K15 was identified with Pichia anomala by the Microlog TM 4.0 identification system and homology of the ITS sequence. Killer toxin generated from P. anomala K15 was inactivated by pronase E and suggested to be a protein. Therefore killer toxin of P. anomala K15 was thought to be safe in human such as bacteriocin. P. anomala K15 was sufficient for growth in 50% glucose and could be used to prevent contaminant in initial stages of alcohol beverage fermentation.

키워드

참고문헌

  1. Teturo Y, Tamio H, Hajime H, Mitsunobu I, Hideyo Y. 1986. Killer toxin from Hansenula mrakii selectively inhibits cell wall synthesis in a sensitive yeast. FEBS Letters 197: 50-54 https://doi.org/10.1016/0014-5793(86)80296-4
  2. Bevan EA, Makower M. 1963. The physiological basis of the killer character in yeast. Proceeding of the 11th International Conference on Genetics. Vol 1, p 203
  3. Faith I, Demet A, Tolga A. 2006. Killer toxin of Pichia anomala NCYC 432; purification, characterization and its exo-$\beta$-1,3-glucanase activity. Enzyme Microb Tech 39: 669-676 https://doi.org/10.1016/j.enzmictec.2005.11.024
  4. Lee JS, Yi SH, Kim JH, Yoo JY. 1999. Isolation of wild killer yeast from traditional meju and production of killer toxin. Korean J Biotechnol Bioeng 14: 434-439
  5. Fatih Z, Demet A, Yasemin D. 2004. Immunization of the industrial fermentation starter culture strain of Saccharomyces cerevisiae to a contaminating killer toxin- producing Candida tropicalis. Food Microbiol 21: 635-640 https://doi.org/10.1016/j.fm.2004.03.012
  6. Magliani W, Conti S, Gerloni M, Bertolotti D, Polonelli L. 1997. Yeast killer systems. Clin Microbiol Rev 10: 369-400
  7. Choi EH, Chung EY, Chung WC. 1998. Construction of killer yeasts by spheroplast fusion. J Korean Agri Chem Soc 31: 26-32
  8. Baek SY, Chung WC, Choi EH. 2000. Effect of mutagens and stabilizing agents on the killing activity of Candidadattila and isolation of the killer toxin by gel filtration. J Natural Science SWINS 12: 63-69
  9. Choi EH, Chang HC, Chung EY, Chung WC. 1990. Isolation and identification of wild killer yeasts Candida dattila. Kor J Appl Microbiol Biotechnol 18: 1-5
  10. Chung WC, Chang HC, Choi EH. 1990. Killer Characteristics of Candida dattila K109 and K112 strains. Kor J Appl Microbiol Biotechnol 18: 26-30
  11. Rhee CH, Woo CJ, Lee JS, Chung KT, Park HD. 1996. Characteristics of ethanol fermentation by a killer yeast, Saccharomyces cerevisiae BI5-1. Kor J Appl Microbiol Biotechnol 24: 331-335
  12. Roland K, Daniel J, Raffael S, Friedhelm M. 2002. Genome organization of the linear Pichia etchellsii plasmid PE1A: evidence for expression of an extracellular chitin-binding protein homologous to the $\alpha$-subunit of the Kluyveromyces lactis killer toxin. Plasmid 47: 224-233 https://doi.org/10.1016/S0147-619X(02)00014-8
  13. Izgu F, Altinbay D, Yucelis A. 1997. Identification and killer activity of a yeast contaminating starter cultures of Saccharomyces cerevisiae strains used in the Turkish baking industry. Food Microbiol 14: 125-131 https://doi.org/10.1006/fmic.1996.0082
  14. Chung WC, Choi EH. 1990. Protoplast fusion between Candida dattila K109 and wine yeast. Kor J Appl Microbiol Biotechnol 18: 121-125
  15. Kim JH, Kim NM, Lee JS. 2000. Production of killer toxin from a mutant of Hansenular capsulata S-13. Korean J Food & Nutr 13: 158-163
  16. Santos A, Sánchez A, Marquina D. 2004. Yeasts as biological agents to control Botrytis cinerea. Microbiol Res 159: 331-338 https://doi.org/10.1016/j.micres.2004.07.001
  17. Santos A, Marquina D. 2004. Killer toxin of Pichia membrabifaciens and its possible use of a biocontrol agent against grey mould disease of grapevine. Microbiology 150: 2527-2534 https://doi.org/10.1099/mic.0.27071-0
  18. Mogens J, Judy N. 1996. Yeasts and their possible beneficial and negative effects on the quality of dairy products. Int Dairy Journal 6: 755-768 https://doi.org/10.1016/0958-6946(95)00071-2
  19. Lyu HS, Lee HS, Im JH, Kim JL, Kim SD. 2004. Isolation and identification of Sphingomonas sanguis from wild pheasant and production of antagonistic substance against fowl typhoid causing Salmonella gallinarum. J Korean Soc Appl Biol Chem 47: 27-32

피인용 문헌

  1. Leavening Ability of the Isolate Saccharomyces cerevisiae MF10003 in Bakery Dough vol.23, pp.2, 2013, https://doi.org/10.5352/JLS.2013.23.2.222
  2. Analysis of Microbial Diversity in Nuruk Using PCR-DGGE vol.22, pp.1, 2012, https://doi.org/10.5352/JLS.2012.22.1.110
  3. Isolation and Identification of Microorganisms with Antimicrobial Activity in Makgeolli of Different Kinds Koji and Nuruk vol.43, pp.4, 2014, https://doi.org/10.3746/jkfn.2014.43.4.577
  4. Quality characteristics of Nuruk with different water contents during fermentation period vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.516
  5. 막걸리 유래 미생물의 활용을 위한 연구 동향 vol.44, pp.3, 2007, https://doi.org/10.4014/mbl.1605.05002