DOI QR코드

DOI QR Code

Therapeutic Effects of Ginseng on Psychotic Disorders

  • Ma, Yu-An (Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Eun, Jae-Soon (College of Pharmacy, Woosuk University) ;
  • Oh, Ki-Wan (College of Pharmacy, Chungbuk National University)
  • Published : 2007.09.30

Abstract

Ginseng, the root of Panax species, a well-known herbal medicine has been used as a traditional medicine for thousands of years and is now a popular and worldwide used natural medicine. Ginseng has been used primarily as a tonic to invigorate weak bodies to help the restoration of homeostasis in a wide range of pathological conditions such as cardiovascular diseases, cancer, immune deficiency and hepatotoxicity. Although conclusive clinical data in humans is still missing, recent research results have suggested that some of the active ingredients ginseng exert beneficial effects on central nervous system (CNS) disorders and neurodegenerative diseases, suggesting it could be used in treatment of psychotic disorders. Data from neural cell cultures and animal studies contribute to the understanding of these mechanisms that involve inhibitory effects on stress-induced corticosterone level increasing and modulating of neurontransmitters, reducing $Ca^{2+}$ over-influx, scavenging of free radicals and counteracting excitotoxicity. In this review, we focused on recently reported medicinal effects of ginseng and summarized the possibility of its applications on psychotic disorders.

Keywords

References

  1. Douki, S., Taktak, M. J., Ben, Z. S. and Cheour, M.: Therapeutic strategies in the first psychotic episode. Encephale. 25, 44-51 (1999)
  2. Sachs, N. A., Sawa, A., Holmes, S. E., Ross, C. A., DeLisi, L. E. and Margolis, R. L.: A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Molecular psychiatry. 10, 758-764 (2005) https://doi.org/10.1038/sj.mp.4001667
  3. Weinberger, D. R.: Genetic mechanisms of psychosis: in vivo and postmortem genomics. Clinical Therapeutics. 27, 8-15 (2005) https://doi.org/10.1016/j.clinthera.2005.07.016
  4. Rybakowski, J., Klonowska, P., Patrzala, A. and Jaracz, J.: Psychopathology and creativity. Psychiatria Polska. 40, 1033-1049 (2006)
  5. Svensson, T. H.: Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Research Reviews. 31, 320-329 (2000) https://doi.org/10.1016/S0165-0173(99)00048-X
  6. Phillips, L. J., Francey, S. M., Edwards, J. and McMurray, N.: Stress and psychosis: towards the development of new models of investigation. Clinical Psychology Review. 27, 307-317 (2007) https://doi.org/10.1016/j.cpr.2006.10.003
  7. Tsigos, C. and Chrousos, G. P.: Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. of Psychosomatic Research. 53, 865-871 (2002) https://doi.org/10.1016/S0022-3999(02)00429-4
  8. Neveu, P. J., Delrue, C., Deleplanque, B. D., Amato, F. R., Puglisi, A. S. and Cabib, S.: Influence of brain and behavioral lateralization in brain: Monoaminergic, neuroendocrine and immune stress responses. Annals of the New York Academy of Sciences. 741, 271-282 (1994) https://doi.org/10.1111/j.1749-6632.1994.tb23110.x
  9. Pijl, H. and Meinders E. A.: Modulation of monoaminergic neural circuits: potential for the treatment of type 2 diabetes mellitus. Treatments in Endocrinology. 1, 71-78 (2002) https://doi.org/10.2165/00024677-200201020-00001
  10. Kalia, M.: Neurobiological basis of depression: an update. Metabolism. 54, 24-27 (2005)
  11. Jayanthi, L. D. and Ramamoorthy, S.: Regulation of monoamine transporters: influence of psychostimulants and therapeutic antidepressants. The AAPS Journal. 27, 728-738 (2005)
  12. Rege, N. N., Thatte, U. M. and Dahanukar, S. A.: Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytotherapy Research. 13, 275-291 (1999) https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<275::AID-PTR510>3.0.CO;2-S
  13. Bhattacharya, S. K. and Murugandam, A. V.: Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol. Biochem. Behav. 75, 547-555 (2003) https://doi.org/10.1016/S0091-3057(03)00110-2
  14. Reay, J. L., Kennedy, D. O. and Scholey, A. B.: Effects of Panax ginseng, consumed with and without glucose, on blood glucose levels and cognitive performance during sustained 'mentally demanding' tasks. J. Psychopharmacol. 20, 771-781 (2006) https://doi.org/10.1177/0269881106061516
  15. Rausch, W. D., Liu, S., Gille, G . and Radad, K.: Neuroprotective effects of ginsenosides. Acta Neurobiol Exp (Wars). 66, 369-375 (2006)
  16. Lopez, M. V., Cuadrado, M. P., Ruiz, O. M., Del, A. M. and Accame, M. E.: Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim. Biophys. Acta. 1770, 1308-1316 (2007) https://doi.org/10.1016/j.bbagen.2007.06.008
  17. Wei, X. Y., Yang, J. Y., Wang, J, H. and Wu, C. F.: Anxiolytic effect of saponins from Panax quinquefolium in mice. J. Ethnopharmacol. 111, 613-618 (2007) https://doi.org/10.1016/j.jep.2007.01.009
  18. Park, J. H., Cha, H. Y., Seo, J. J., Hong, J. T., Han, K. and Oh, K. W.: Anxiolytic-like effects of ginseng in the elevated plus-maze model: comparison of red ginseng and sun ginseng. Prog. Neuropsychopharmacol Biol. Psychiatry. 29, 895-900 (2005) https://doi.org/10.1016/j.pnpbp.2005.04.016
  19. Carr, M. N., Bekku, N. and Yoshimura, H.: Identification of anxiolytic ingredients in ginseng root using the elevated plus-maze test in mice. Eur. J. Pharmacol. 531, 160-165 (2006) https://doi.org/10.1016/j.ejphar.2005.12.014
  20. Nguyen, T. T., Matsumoto, K., Yamasaki, K., Nguyen, M. D., Nguyen, T. N. and Watanabe, H. Effects of majonoside-R2 on pentobarbital sleep and gastric lesion in psychologically stressed mice. Pharmacol. Biochem. Behav. 53, 957-963 (1996) https://doi.org/10.1016/0091-3057(95)02147-7
  21. Nguyen, T. T., Matsumoto, K., Yamasaki, K. and Watanabe, H.: Majonoside-R2 reverses social isolation stress-induced decrease in pentobarbital sleep in mice: possible involvement of neuroactive steroids. Life Sci. 61, 395-402 (1997) https://doi.org/10.1016/S0024-3205(97)00396-2
  22. Cha, H. Y., Park, J. H., Hong, J. T., Yoo, H. S., Song, S., Hwang, B. Y., Eun, J. S. and Oh, K. W.: Anxiolytic-like effects of ginsenosides on the elevated plus-maze model in mice. Biol. Pharm. Bull. 28, 1621-1625 (2005) https://doi.org/10.1248/bpb.28.1621
  23. Lee, S. P., Honda, K., Rhee, Y. H. and Inoue, S.: Chronic intake of panax ginseng extract stabilizes sleep and wakefulness in food-deprived rats. Neurosci. Lett. 111, 217-221 (1990) https://doi.org/10.1016/0304-3940(90)90371-F
  24. Kennedy, D. O., Scholey, A. B., Drewery, L., Marsh, V. R., Moore, B. and Ashton, H.: Electroencephalograph effects of single doses of Ginkgo biloba and Panax ginseng in healthy young volunteers. Pharmacol. Biochem. Behav. 75, 701-709 (2003) https://doi.org/10.1016/S0091-3057(03)00120-5
  25. Kim, H. S., Kang, J. G. and Oh KW.: Inhibition by ginseng total saponin of the development of morphine reverse tolerance and dopamine receptor supersensitivity in mice. Gen. Pharmacol. 26, 1071-1076 (1995) https://doi.org/10.1016/0306-3623(94)00267-Q
  26. Kim, H. S., Kang, J. G., Seong, Y. H., Nam, K. Y. and Oh, K. W.: Blockade by ginseng total saponin of the development of cocaine induced reverse tolerance and dopamine receptor supersensitivity in mice. Pharmacol. Biochem. Behav. 50, 23-27 (1995) https://doi.org/10.1016/0091-3057(94)00224-7
  27. Kim, H. S., Jang, C. G., Park, W. K., Oh, K. W., Rheu, H. M., Cho, D. H. and Oh, S.: Blockade by ginseng total saponin of methamphetamine-induced hyperactivity and conditioned place preference in mice. Gen. Pharmacol. 27, 199-204 (1996) https://doi.org/10.1016/0306-3623(95)02023-3
  28. Kim, H. S. and Kim, K. S.: Inhibitory effects of ginseng total saponin on nicotine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity. Behav. Brain Research. 103, 55-61 (1999) https://doi.org/10.1016/S0166-4328(99)00030-3
  29. Bu, Y., Jin, Z. H., Park, S. Y., Baek, S., Rho, S., Ha, N., Park, S. K., Kim, H. and Sun, Y. K.: Siberian ginseng reduces infarct volume in transient focal cerebral ischemia in Sprague-Dawley rats. Phytotherapy Research. 19, 167-169 (2005) https://doi.org/10.1002/ptr.1649
  30. Choi, S. S., Lee, J. K. and Suh, H. W.: Effect of ginsenosides administered intrathecally on the antinociception induced by cold water swimming stress in the mouse. Biol. Pharm. Bull. 26, 858-861 (2003) https://doi.org/10.1248/bpb.26.858
  31. Banerjee, U. and Izquierdo, J. A.: Antistress and antifatigue properties of Panax ginseng: comparison with piracetam. Acta Physiological Latino Americana. 32, 277-285 (1982)
  32. Geller, S. E. and Studee, L.: Botanical and dietary supplements for mood and anxiety in menopausal women. Menopause. 14, 541-549 (2007) https://doi.org/10.1097/01.gme.0000236934.43701.c5
  33. Fulder, S.: Ginseng and the hypothalamic-pituitary control of stress, Am. J. Chin. Med. 9, 112–118 (1981)
  34. Hiai, S., Yokoyama, H. and Oura, H.: Features of ginseng saponin-induced corticosterone secretion, Endocrinol. Jpn. 26, 737-740 (1979) https://doi.org/10.1507/endocrj1954.26.737
  35. Hiai, S. Yokoyama, H. Oura, H. and Kawashima, Y.: Evaluation of corticosterone secretion-inducing activities of ginsenosides and their prosapogenins and sapogenins. Chem. Pharm. Bull. 31, 168-174 (1983) https://doi.org/10.1248/cpb.31.168
  36. Hiai, S. Yokoyama, H. Oura, H. and Yano, S.: Stimulation of pituitary adrenocortical system by ginseng saponin. Endocrinol. Jpn. 26, 661-665 (1979) https://doi.org/10.1507/endocrj1954.26.661
  37. Herman, J. and Cullinan, W.: Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20, 78-84 (1997) https://doi.org/10.1016/S0166-2236(96)10069-2
  38. Murphy, B. Filipini, D. and Ghadirian, A.: Possible use of glucocorticoid receptor antagonists in the treatment of major depression: Preliminary results using RU 486. J. Psychiatry Neurosci. 18, 209-213 (1993)
  39. Thakore, J. and Dinan, T.: Cortisol synthesis inhibition: a new treatment strategy for the clinical and endocrine manifestations of depression. Biol. Psychiatry 37, 364-368 (1995) https://doi.org/10.1016/0006-3223(94)00137-R
  40. Kim, D. H., Jung, J. S., Suh, H. W., Huh, S. O., Min, S. K., Son, B. K., Park, J. H., Kim, N. D., Kim, Y. H. and Song, D. K.: Inhibition of stress-induced plasma corticosterone levels by ginsenosides in mice: Involvement of nitric oxide. NeuroReport. 9, 2261-2264 (1998) https://doi.org/10.1097/00001756-199807130-00021
  41. Kima, D. H., Moonb, Y. S., Jungc, J. S., Mind, S. K., Sona, B. K., Suhc, H. W. and Song, D. K.: Effects of ginseng saponin administered intraperitoneally on the hypothalamo-pituitary-adrenal axis in mice. Neurosci. Letters. 343, 62-66 (2003) https://doi.org/10.1016/S0304-3940(03)00300-8
  42. Tatum, A. L. and Seevers, M. H. Experimental cocaine addiction. J. Pharmacol. Exp. Ther. 36, 401-410 (1929)
  43. Kim, H. S., Kim, K. S. and Oh, K. W.: Inhibition by MK-801 of cocaine-induced sensitization, conditioned place preference, and dopamine-receptor supersensitivity in mice. Brain Res. Bull. 40, 201-207 (1996) https://doi.org/10.1016/0361-9230(96)00006-8
  44. Kim, H. S., Jang, C. G., Oh, K. W., Oh, S., Rheu, H. M., Rhee, G. S., Seong, Y. H. and Park, W. K.: Effects of ginseng total saponin on morphine-induced hyperactivity and conditioned place preference in mice. J. Ethnopharmacol. 60, 33-42 (1998) https://doi.org/10.1016/S0378-8741(97)00131-1
  45. Kim, H. S., Kim, K. S. and Oh, K. W.: Ginseng total saponin inhibits nicotine-induced hyperactivity and conditioned place preference in mice. J. Ethnopharmacol. 66, 83-90 (1999) https://doi.org/10.1016/S0378-8741(98)00192-5
  46. Kim, H. S., Hong, Y. T., Oh, K. W., Seong, Y. H., Rheu, H. M., Cho, D. H., Oh, S., Park, W. K. and Jang, C. G.: Inhibition by ginsenosides $Rb_1\;and\;Rg_1$ of methamphetamine-induced hyperactivity, conditioned place preference and postsynaptic dopamine receptor supersensitivity in mice. Gen. Pharmacol. 30, 783-789 (1998) https://doi.org/10.1016/S0306-3623(97)00330-3
  47. Kim, H. S., Kim, K. S. and Oh, K. W.: Inhibition by ginsenosides $Rb_1\;and\;Rg_1$ of cocaine-induced hyperactivity, conditioned place preference, and postsynaptic dopamine receptor supersensitivity in mice. Pharmacol. Biochem. Behav. 63, 407-412 (1999) https://doi.org/10.1016/S0091-3057(99)00020-9
  48. Verkhratsky, A. and Kirchhoff, F.: NMDA Receptors in glia. Neuroscientist. 13, 28-37 (2007) https://doi.org/10.1177/1073858406294270
  49. Gardoni, F. and Di, L. M.: New targets for pharmacological intervention in the glutamatergic synapse. Eur. J. Pharmacol. 545, 2-10 (2006) https://doi.org/10.1016/j.ejphar.2006.06.022
  50. Fan, M. M. and Raymond, L. A.: N-Methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease. Prog. in Neurobiol. 81, 272-293 (2007) https://doi.org/10.1016/j.pneurobio.2006.11.003
  51. Yang, P. M., Chen, H. C., Tsai, J. S. and Lin, L. Y.: Cadmium induces $Ca^{2+}$-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kappaB activity. Chem. Res. Toxicol. 20, 406-415 (2007) https://doi.org/10.1021/tx060144c
  52. Bano, D. and Nicotera, P.: $Ca^{2+}$ signals and neuronal death in brain ischemia. Stroke. 38, 674-676 (2007) https://doi.org/10.1161/01.STR.0000256294.46009.29
  53. Hsu, S. S., Huang, C. J., Cheng, H. H., Chou, C. T., Lee, H. Y., Wang, J. L., Chen, I. S., Liu, S. I., Lu, Y. C., Chang, H. T., Huang, J. K., Chen, J. S. and Jan, C. R.: Anandamide-induced $Ca^{2+}$ elevation leading to p38 MAPK phosphorylation and subsequent cell death via apoptosis in human osteosarcoma cells. Toxicology. 231, 21-29 (2007) https://doi.org/10.1016/j.tox.2006.11.005
  54. Zhang, L., Rzigalinski, B. A., Ellis, E. F. and Satin, L. S.: Reduction of voltage-dependent $Mg^{2+}$ blockade of NMDA current in mechanically injured neurons. Science. 274, 1921-1923 (1996) https://doi.org/10.1126/science.274.5294.1921
  55. Hori, N. and Carpenter, D. O.: Transient ischemia causes a reduction of $Mg^{2+}$ blockade of NMDA receptors. Neurosci. Lett. 173, 75-78 (1994) https://doi.org/10.1016/0304-3940(94)90153-8
  56. Jiang, K. Y. and Qian, Z. N.: Effects of Panax notoginseng saponins on posthypoxic cell damage of neurons in vitro. Acta Pharmacologica Sinica. 16, 399-402 (1995)
  57. Wen, T. C., Yoshimura, H., Matsuda, S., Lim, J. H. and Sakanaka, M.: Ginseng root prevents learning disability and neuronal loss in gerbils with 5-minute forebrain ischaemia. Acta Neuropathol. 91, 15-22 (1996) https://doi.org/10.1007/s004010050387
  58. Lim, J. H., Wen, T. C., Matsuda, S., Tanaka, J., Maeda, N., Peng, H., Aburaya, J., Ishihara, K. and Sakanaka, M.: Protection of ischaemic hippocampal neurons by ginsenoside $Rb_1$, a main ingredient of ginseng root. Neurosci. Res. 28, 191-200 (1997) https://doi.org/10.1016/S0168-0102(97)00041-2
  59. Deng, H. and Zhang, J.: Anti-lipid peroxidative effect of ginsenosides $Rb_1\;and\;Rg_1$. Chin. Med. J. 104, 395-398 (1991)
  60. Kim, H. M., Lee, J. H., Goo, Y. S. and Nah, S. Y.: Effect of ginsenosides on calcium channels and membrane capacitance in rat adrenal chromaffin cells. Brain Res. Bull. 46, 245-251 (1998) https://doi.org/10.1016/S0361-9230(98)00014-8
  61. Liao, B., Newmark, H. and Zhou, R.: Neuroprotective effect of ginseng total saponin and ginsenosides $Rb_1\;and\;Rg_1$ on spinal cord neurons in vitro. Exp. Neurol. 173, 224-234 (2002) https://doi.org/10.1006/exnr.2001.7841
  62. Lee, J. H., Kim, S. R., Bae, C. S., Kim, D., Hong, H. N. and Nah, S. Y.: Protective effect of ginsenosides, active ingredients of panax ginseng, on kainic acid-induced neurotoxicity in rat hippocampus. Neurosci. Lett. 325, 129-133 (2002) https://doi.org/10.1016/S0304-3940(02)00256-2
  63. Tohda, C., Matsumoto, N., Zou, K., Meselhy, M. R. and Komatsu, K.: Axonal and dendritic extension by protopanaxadiol-type saponins from ginseng drugs in SK–N–SH cells. Jpn. J. Pharmacol. 99, 254-262 (2002)
  64. Zhao, R. and McDaniel, W. F.: Ginseng improves strategic learning by normal and brain-damaged rats. NeuroReport. 9, 1619-1624 (1998) https://doi.org/10.1097/00001756-199805110-00066
  65. Zhong, Y. M., Nishijo, H., Uwano, T., Tamura, R., Kawanishi, K. and Ono, T.: Red ginseng ameliorated place navigation deficits in young rats with hippocampal lesions and aged rats. Physiol. Behav. 69, 511-525 (2000) https://doi.org/10.1016/S0031-9384(00)00206-7
  66. Chang, M. S., Lee, S. C. and Rho, H. M.: Transcriptional activation of Cu/Zn superoxide dismutase and catalase genes by panaxadiol ginsenosides extracted from Panax ginseng. Phytother. Res. 13, 641-644 (1999) https://doi.org/10.1002/(SICI)1099-1573(199912)13:8<641::AID-PTR527>3.0.CO;2-Z
  67. Nishiyama, N., Cho, S. T., Kitagama, I. and Saito, H.: Malonylginsenoside $Rb_1$ potentiates nerve growth factor (NGF)-induced neurite outgrowth of cultured chick embryonic dorsal root ganglia. Biol. Pharm. Bull. 17, 509-513 (1994) https://doi.org/10.1248/bpb.17.509
  68. Bormann, J. and Feigenspan, A.: $GABA_C$ receptors. Trends in Nneurosci. 18, 515-519 (1995) https://doi.org/10.1016/0166-2236(95)98370-E
  69. Turner, A. J. and Whittle, S. R.: Biochemical dissection of the gamma-aminobutyrate synapse. Biochem. Journal. 209, 29-41 (1983) https://doi.org/10.1042/bj2090029
  70. Fritschy, J. M. and Panzanelli, P.: Molecular and synaptic organization of GABAA receptors in the cerebellum: Effects of targeted subunit gene deletions. Cerebellum. 5, 275-285 (2006) https://doi.org/10.1080/14734220600962805
  71. Johnston, G. A. R.: $GABA_C$ receptors: relatively simple transmitter-gated ion channels? Trends in Pharmacol. Sci. 17, 319-323 (1996) https://doi.org/10.1016/0165-6147(96)10038-9
  72. Bao, H. Y., Zhang, J., Yeo, S. J., Myung, C. S., Kim, H. M., Kim, J. M., Park, J. H., Cho, J. and Kang, J. S.: Memory enhancing and neuroprotective effects of selected ginsenosides. Arch. Pharm. Res. 28, 335-342 (2005) https://doi.org/10.1007/BF02977802
  73. Yun, Y. J., Lee, B., Hahm, D. H., Kang, S. K., Han, S. M., Lee, H. J., Pyun, K. H. and Shim, I.: Neuroprotective effect of palmul-chongmyeong-tang on ischemia-induced learning and memory deficits in the rat. Biol. Pharm. Bull. 30, 337-342 (2007) https://doi.org/10.1248/bpb.30.337
  74. Bahrke, M. S. and Morgan, W. R.: Evaluation of the ergogenic properties of ginseng: an update. Sports Medicine. 29, 113-133 (2000) https://doi.org/10.2165/00007256-200029020-00004
  75. Yuan, C. S., Attele, A. S., Wu, J. A. and Liu, D.: Modulation of American ginseng on brainstem GABAergic effects in rats. J. Ethnopharmacol. 62, 215-222 (1998) https://doi.org/10.1016/S0378-8741(98)00066-X
  76. Jang, S., Ryu, J. H., Kim, D. H. and Oh, S.: Changes of [3H]MK-801, [3H]muscimol and [$^3H$]flunitrazepam binding in rat brain by the prolonged ventricular infusion of transformed ginsenosides. Neurochem. Res. 29, 2257-2266 (2004) https://doi.org/10.1007/s11064-004-7034-2
  77. Kim, H. S., Hwang, S. L., Nah, S. Y. and Oh, S.: Changes of [$^3H$]MK-801, [$^3H$]muscimol and [$^3H$]flunitrazepam binding in rat brain by the prolonged ventricular infusion of ginsenoside Rc and $Rg_1$. Pharmacol. Res.. 43, 473-479 (2001) https://doi.org/10.1006/phrs.2001.0809
  78. Shiah, I. S. and Yatham, L. N.: Serotonin in mania and in the mechanism of action of mood stabilizers: a review of clinical studies. Bipolar Disord. 2, 77-92 (2000) https://doi.org/10.1034/j.1399-5618.2000.020201.x
  79. Mahmood, T. and Silverstone, T.: Serotonin and bipolar disorder. J. Affect. Disord. 66, 1-11 (2001) https://doi.org/10.1016/S0165-0327(00)00226-3
  80. Shastry, B. S.: Bipolar disorder: An update. Neurochem. Int. 46, 273-279 (2005) https://doi.org/10.1016/j.neuint.2004.10.007
  81. Saxena, P., Sitholey, A. K., Saxena, S., Vrat, S., Kumar. and Shanker, K.: Platelet serotonin in juvenile mania. Biogenic Amines. 15, 413-421 (1999)
  82. Pandey, G. N., Pandey, S. C., Ren, X., Dwivedi, Y. and Janicak, P. G.: Serotonin receptors in platelets of bipolar and schizoaffective patients: effect of lithium treatment. Pyschopharmacology. 170, 115-123 (2003) https://doi.org/10.1007/s00213-003-1530-y
  83. Pivac, N., Kozaric, D., Mustapic, M., Dezeljin, M., Borovecki, A., Grubisic, M. and Muck, D.: Platelet serotonin in combat related posttraumatic stress disorder with psychotic symptoms. J Affect Disord. 93, 223-227 (2006) https://doi.org/10.1016/j.jad.2006.02.018
  84. Plain, H. and Berk, M.: The platelet as a peripheral marker in psychiatric illness. Hum. Psychopharmacol. Clin. Exp. 16, 229-236 (2001) https://doi.org/10.1002/hup.251
  85. Askenazy, F., Caci, H., Myquel, M., Darcourt, G. and Lecrubier, Y.: Relationship between impulsivity and platelet serotonin content in adolescents. Psychiatry Res. 94, 19-28 (2000) https://doi.org/10.1016/S0165-1781(00)00124-4
  86. Peirson, A. R., Heuchert, J. W., Thomala, L., Berk, M., Plein, H. and Cloninger, C. R.: Relationship between serotonin and the temperament and character inventory. Psychiatry Res. 89, 29-37 (1999) https://doi.org/10.1016/S0165-1781(99)00079-7
  87. Muck, M., Jakovljevic. and Pivac, N.: Platelet 5-HT concentrations and suicidal behavior in recurrent major depression. J. Affect. Disord. 39, 73-80 (1996) https://doi.org/10.1016/0165-0327(96)00024-9
  88. Pivac, N., Muck, D., Jakovljevic, M. and Brzovic, Z.: Hypothalamic–pituitary–adrenal axis function and platelet serotonin concentrations in depressed patients. Psychiatry Res. 73, 123-132 (1997) https://doi.org/10.1016/S0165-1781(97)00120-0
  89. Meszaros, Z., Borsiczky, D., Mate, M., Tarcali, J., Szombathy, T., Tekes, K. and Magyar, K.: Platelet MAO-B activity and serotonin content in patients with dementia: effect of age, medication and disease. Neurochem. Res. 23, 863-868 (1998) https://doi.org/10.1023/A:1022458928442
  90. Goveas, J. S., Csernansky, J. G. and Coccaro, E. F.: Platelet serotonin content correlates inversely with life history of aggression in personality-disordered subjects. Psychiatry Res. 126, 23-32 (2004) https://doi.org/10.1016/j.psychres.2004.01.006
  91. Pivac, N., Muck, D. and Jakovljevic, M.: Platelet 5-HT levels and hypothalamic–pituitary–adrenal axis activity in schizophrenic patients with positive and negative symptoms. Neuropsychobiology. 36, 19-21 (1997) https://doi.org/10.1159/000119354
  92. Muck, D., Jakovljevic, M. and Deanovic, Z.: Platelet serotonin in subtypes of schizophrenia and unipolar depression. Psychiatry Res. 38, 105-113 (1991) https://doi.org/10.1016/0165-1781(91)90036-O
  93. Muck-Seler, D., Pivac, N., Jakovljevic, M., Sagud, M. and Mihaljevic, A.: Platelet 5-HT concentration and comorbid depression in war veterans with or without posttraumatic stress disorder. J. Affect. Disord. 75, 171-179 (2003) https://doi.org/10.1016/S0165-0327(02)00035-6
  94. Praag, H. M.: The cognitive paradox in posttraumatic stress disorder: a hypothesis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 28, 923-935 (2004)
  95. Southwick, S. M., Krystal, J. H., Bremner, D., Morgan, C. A., Nicolaou, A. L., Nagy, L. M., Johnson, D. R., Heninger, G. R. and Charney, D. S.: Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry. 54, 749-758 (1997) https://doi.org/10.1001/archpsyc.1997.01830200083012
  96. Brady, K., Pearlstein, T., Asnis, G. M., Baker, D., Rothbaum, B., Sikes, C. R. and Farfel, G. M.: Efficacy and safety of sertraline treatment of posttraumatic stress disorder. JAMA. 283, 1837-1844 (2000) https://doi.org/10.1001/jama.283.14.1837
  97. Bhattcharyya, D. and Sur, T. K.: Effect of Panax ginseng and diazepam on brain 5-hydroxytryptamine and its modification by diclofenac in rat. Indian J. Physiol. Pharmacol. 43, 505-509 (1999)
  98. Sheikh, N., Ahmad, A., Siripurapu, K. B., Kuchibhotla, V. K., Singh, S. and Palit, G.: Effect of Bacopa monniera on stress induced changes in plasma corticosterone and brain monoamines in rats. J. of Ethnopharmacol. 111, 671-676 (2007) https://doi.org/10.1016/j.jep.2007.01.025
  99. Min, Y. K., Chung, S. H., Lee, J. S., Kim, S. S., Shin, H. D., Lim, B. V., Shin, M. C., Jang, M. H., Kim, E. H. and Kim, C. J.: Red ginseng inhibits exercise-induced increase in 5-hydroxytryptamine synthesis and tryptophan hydroxylase expression in dorsal raphe of rats. J. of Pharmacol Sci. 93, 218-221 (2003) https://doi.org/10.1254/jphs.93.218
  100. Kim, H. S., Oh, K. W., Rheu, H. M. and Kim, S. H.: Antagonism of U-50,488H-induced antinociception by ginseng total saponins is dependent on serotonergic mechanisms. Pharmacol. Biochem. Behav. 42, 587-593 (1992) https://doi.org/10.1016/0091-3057(92)90003-X
  101. Choi, S., Lee, J. H., Oh, S., Rhim, H., Lee, S. M. and Nah, S. Y.: Effects of ginsenoside $Rg_2$ on the $5-HT_{3A}$ receptor-mediated ion current in Xenopus oocytes. Molecules and Cells. 15, 108-113 (2003)
  102. Lee, B. H., Jeong, S. M., Lee, J. H., Kim, D. H., Kim, J. H., Kim, J. I., Shin, H. C., Lee, S. M. and Nah, S. Y.: Differential effect of ginsenoside metabolites on the $5-HT_{3A}$ receptor-mediated ion current in Xenopus oocytes. Molecules and Cells. 17, 51-56 (2004)
  103. Lee, B. H., Lee, J. H., Lee, S. M., Jeong, S. M., Yoon, I. S., Lee, J. H., Choi, S. H., Pyo, M. K., Rhim, H., Kim, H. C., Jang, C. G., Lee, B. C., Park, C. S. and Nah, S. Y.: Identification of ginsenoside interaction sites in $5-HT_{3A}$ receptors. Neuropharmacol. 52, 1139-1150 (2007) https://doi.org/10.1016/j.neuropharm.2006.12.001

Cited by

  1. Ginsenoside Rg3 Prevents Oxidative Stress-Induced Astrocytic Senescence and Ameliorates Senescence Paracrine Effects on Glioblastoma vol.22, pp.9, 2017, https://doi.org/10.3390/molecules22091516