Oscillatory Behavior of Linear Neutral Delay Dynamic Equations on Time Scales

  • Saker, Samir H. (Department of Mathematics, Faculty of Science, Mansoura University)
  • 투고 : 2005.07.11
  • 발행 : 2007.06.23

초록

By employing the Riccati transformation technique some new oscillation criteria for the second-order neutral delay dynamic equation $$(y(t)+r(t)y({\tau}(t)))^{{\Delta}{\Delta}}+p(t)y(\delta(t))=0$$, on a time scale $\mathbb{T}$ are established. Our results as a special case when $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{N}$ improve some well known oscillation criteria for second order neutral delay differential and difference equations, and when $\mathbb{T}=q^{\mathbb{N}}$, i.e., for second-order $q$-neutral difference equations our results are essentially new and can be applied on different types of time scales. Some examples are considered to illustrate the main results.

키워드

참고문헌

  1. R. P. Agarwal, M. Bohner, D. O'Regan, and A. Peterson, Dynamic equations on time scales: A survey, J. Comp. Appl. Math., Special Issue on "Dynamic Equations on Time Scales", edited by R. P. Agarwal, M. Bohner, and D. O'Regan, (Preprint in Ulmer Seminare 5), 141(1-2)(2002), 1-26. https://doi.org/10.1016/S0377-0427(01)00432-0
  2. R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic equations, Canadian Appl. Math. Quart., 13(2005), 1-17.
  3. E. A. Bohner and J. Hoffacker, Oscillation properties of an Emden-Fowler type Equations on Discrete time scales, J. Diff. Eqns. Appl., 9(2003), 603-612. https://doi.org/10.1080/1023619021000053575
  4. M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
  5. M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2002.
  6. M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math., 34(2004), 1239-1254 https://doi.org/10.1216/rmjm/1181069797
  7. M. Bohner and S. H. Saker, Oscillation criteria for perturbed nonlinear dynamic equations, Math. Comp. Modelling, 40(2004), 249-260 https://doi.org/10.1016/j.mcm.2004.03.002
  8. E. A. Bohner, M. Bohner and S. H. Saker, Oscillation criteria for a certain class of second order Emden-Fowler dynamic Equations, Elect. Transc. Numerical. Anal., (to appear).
  9. L. Erbe, Oscillation criteria for second order linear equations on a time scale, Canadian Applied Mathematics Quarterly, 9(2001), 1-31.
  10. L. Erbe and A. Peterson, Positive solutions for a nonlinear differential equation on a measure chain, Math. Comput. Modelling, Boundary Value Problems and Related Topics, 32(5-6)(2000), 571-585.
  11. L. Erbe and A. Peterson, Riccati equations on a measure chain, In G. S. Ladde, N. G. Medhin, and M. Sambandham, editors, Proceedings of Dynamic Systems and Applications, 3, pages 193-199, Atlanta, 2001. Dynamic publishers.
  12. L. Erbe and A. Peterson, Oscillation criteria for second order matrix dynamic equations on a time scale, Special Issue on "Dynamic Equations on Time Scales", edited by R. P. Agarwal, M. Bohner, and D. O'Regan, J. Comput. Appl. Math., 141(2002), 169-185. https://doi.org/10.1016/S0377-0427(01)00444-7
  13. L. Erbe and A. Peterson, Boundedness and oscillation for nonlinear dynamic equations on a time scale, Proc. Amer. Math. Soc., 132(2004), 735-744. https://doi.org/10.1090/S0002-9939-03-07061-8
  14. L. Erbe, A. Peterson and S. H. Saker, Oscillation criteria for second-order nonlinear dynamic equations on time scales, J. London Math. Soc., 67(2003), 701-714. https://doi.org/10.1112/S0024610703004228
  15. M. K. Grammatikopoulos, G. Ladas and A. Meimaridou, Oscillation of second order neutral delay differential equations, Radovi Mat., 1(1985), 267-274.
  16. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd Ed. Cambridge Univ. Press 1952.
  17. S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18(1990), 18-56. https://doi.org/10.1007/BF03323153
  18. S. H. Saker, Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comp., 148(2004), 81-91. https://doi.org/10.1016/S0096-3003(02)00829-9
  19. S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comp. Appl. Math., 177(2005), 375-387. https://doi.org/10.1016/j.cam.2004.09.028
  20. S. H. Saker, New oscillation criteria for second-order nonlinear dynamic equations on time scales, Nonlinear Fun. Anal. Appl., 11(2006), 351-370.
  21. B. G. Zhang and S. S. Cheng, Oscillation criteria and comparison theorems for delay difference equations, Fasiculi Mathematici, 25(1995), 13-32.