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ABSTRACT. We estimate the stable rank and connected stable rank of group C*-algebras
of certain disconnected solvable Lie groups such as semi-direct products of connected solv-
able Lie groups by the integers.

Introduction

The stable rank for C*-algebras was introduced by Rieffel [13] as a noncom-
mutative counterpart to the covering dimension of topological spaces. Indeed, the
stable rank of the commutative C*-algebra of all continuous functions on a com-
pact Hausdorff space is computed by the covering dimension of the space (see (F2)
below). For the (full) group C*-algebras of Lie groups that are noncommutative in
general but close to commutative C'*-algebras in some sense such as K-theory, the
Rieffel’s question [13, Question 4.14] is to describe the stable rank of the group C*-
algebras in terms of the structure of Lie groups. For this interesting question, some
partial answers were obtained by Sheu [15], Takai-Sudo [23], [24] and the author
[16], [17], [18] and [21] for the connected case, and by [19] and [20] for the discon-
nected case. On the other hand, in [22] we showed that the group C*-algebras of
some connected Lie groups such as the motion groups have stable rank one.

Our question as the motivation of this paper is whether or not the group C*-
algebras of disconnected solvable Lie groups such as semi-direct products of con-
nected solvable Lie groups by the integers have stable rank one. We have already
considered the similar question for the connected solvable case, and obtained some
results in [23], [24], [17] and [22]. Since the class of C*-algebras with stable rank
one is quite important in the C*-algebra theory, our question should be reasonable
and interesting in some sense. Indeed, among other things, the stable rank one
condition for C*-algebras implies the cancellation of their projections (cf. [2]). See
also [14] for some relations among stable rank, connected stable rank, and K-groups
for C*-algebras.

As the main results we show that the group C*-algebras of semi-direct products
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of (most) non-compact connected solvable Lie groups by the integers Z have stable
rank more than one, and the group C*-algebras of semi-direct products of com-
pact connected commutative Lie groups (that are the k-tori T*), more generally, of
compact Lie groups, by Z have stable rank one and connected stable rank two. In
addition, we obtain the stable rank estimates in the case of semi-direct products of
compact Lie groups by finite cyclic groups. For the proofs, we consider the struc-
ture of those group C*-algebras, and use some basic formulas for the K-groups of
C*-algebras such as the Pimsner-Voiculescu six term exact sequence and some basic
results on the stable rank and connected stable rank of C*-algebras (see below). Our
main interest in this paper is the lower bounds for the stable rank of those group
C*-algebras. This point should be new and interesting. See [17], [18], -- -, [21] for
some results on the upper bounds for the stable rank of group C*-algebras. We
also consider the estimates of the stable rank for group C*-algebras of semi-direct
products of amenable or non-amenable locally compact groups by their quotient
group C*-algebras.

Notation and facts. Let Cy(X) be the C*-algebra of continuous complex-valued
functions vanishing at infinity on a locally compact Hausdorff space X. When X
is compact, we set C(X) = Cyp(X). For a locally compact group G, we denote by
C*(@) its full group C*-algebra (cf. Pedersen [11, Chapter 7]). Let K be the C*-
algebra of compact operators on a separable, infinite dimensional Hilbert space. For
a C*-algebra 2 (or its unitization 2AT), its stable rank and connected stable rank
are denoted by sr(2), csr(2A) respectively (cf. Rieffel [13]). By definition, for n € N,
sr(2A) < nif and only if L, () is dense in A™, and csr(A) < n if and only if GL,,(A)o
acts transitively on L,,(2) for all m > n, and equivalently, L,,(2) for all m > n
are connected, where L, () = {(a;)7_; € A" | 37, aja; is invertible in A}, and
GL,, () is the connected component of GL,, () with the identity matrix ([13,
Corollary 8.5]). Recall the following formulas:

(F1) : csr(A) <sr(A) + 1 for any C*-algebra 2,
(F2) : sr(C(X)) = [dim X/2] + 1, csr(C(X)) < [(dim X +1)/2] + 1,

(F3) : For an exact sequence of C*-algebras: 0 — J — 2 — /7T — 0, sr(J) vV
sr(A/T) <sr(A) <sr(T) Vsr(A/T) Vesr(A/T), csr(A) < esr(T) V esr(A/T),

where dim X is the covering dimension of X, and [z] means the maximum integer
< z, and V is the maximum and A is the minimum (Rieffel [13, Proposition 1.7,
Theorems 4.3, 4.4, 4.11, Corollary 4.10 and p.328], Nistor [8] and Sheu [15, The-
orems 3.9 and 3.10]). Let A x, G be the (full) crossed product of a C*-algebra
2 by a locally compact group G with « an action, that is, a homomorphism from
G to the automorphism group of 2 (cf. [11]). We often omit the symbol « in
what follows. Let Ky(2), K1(2) be the K-groups of a C*-algebra 2(. The following
Pimsner-Voiculescu six term exact sequence (P-V sequence, for short) is known (cf.
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Blackadar [2, Section 10.2]):

Ko@) 525 Ko(A) —2— Ko(2 x4 2)

K% %, Z) —— Ky(A) <2 K (1),
where id means the identity map on 2, ¢ is the canonical inclusion from 2 to
AXyZ, and i, id — a, = (id — @), are the induced maps from 4, id — @ on K-groups
respectively. Furthermore,

(F4): st(UAxoZ) <sr(™A)+1, csr(Ax,Z) <sr(™A)+1

for a (unital) C*-algebra 2 (in the second) by Rieffel [13, Theorem 7.1 and Corollary
8.6].

1. The main results

Theorem 1.1. Let G be a simply connected solvable Lie group and G X, Z a
semi-direct product of G by Z with o an action. Then

st(C* (G xa Z)) > 2.

Moreover, we have csr(C*(G xq Z)) > 2.

Proof. First note that C*(G X, Z) =2 C*(G) X, Z. Since G is a simply connected
solvable Lie group, the quotient group G/[G,G] of G by the (Lie) commutator
[G, G| of G is isomorphic to R™ for some n > 1 since G/[G, G] is a simply connected
commutative Lie group (note that there exists the following exact sequence: 0 =
m(G) — m(G/|G,G]) — [G,G]/|G,G]o = 0, where m1(-) means the fundamental
group and [G, G|y is the connected component of the identity). Then we have the
quotient: C*(G) Xo Z — C*(G/[G,G]) xo Z — 0 since the spectrum of G/[G, G|
just corresponds to the space of 1-dimensional representations of G, and this space
is invariant under the action «. Furthermore, by the Fourier transform we have

C*(G/IG,G]) xa Z = Co((G/IG,G])") s L
Co((Rn)/\) X4 7, = Co(Rn) X4 Z7

where (G/[G,G])" means the dual group of G/[G,G], and & is the dual action of
« via the duality on R™. If the action & on R" is trivial, then

Co(R™) %14 Z = Co(R™) ® C*(Z) = Cy(R™) @ C(T) = Co(R™ x T).

Since dim(R™ x T) > 2, it follows by (F2) that sr(Co(R™ x T)) > 2. Thus, we may
assume that & on R™ is nontrivial in the following. Since the origin 0 of R is fixed
under the action &, we have

(E): 0= Co(R*"\0)XZ — Co(R")x4Z —>CxZ—0



206 Takahiro Sudo

and C x Z = C*(Z) = C(T) by the Fourier transform.
Applying the P-V sequence to the crossed product Cp(R™) x4 Z in the middle
of the above exact sequence (E), we obtain

Ko(CoR™) 2% Ko(Co(R™)) —2— Ko(Co(R™) 314 Z)

I l

K1(Co(R™) %4 Z) «—— K1(Co(R™)) <= K;1(Co(R™).

When n is even, by the Bott periodicity, Ko(Co(R™)) = Ko(C) = Z and
K1(Co(R™)) = K1(C) 2 0. Thus, the following commutative diagram holds:

Z 420, 7 = Ko(Co(R™) x4 Z)

I l

K1(Co(R") x4 Z) 2 0 £979= 0.

Since the map id — &, in the first line is zero, we deduce that Ko(Co(R™) X Z) =X Z
and K;(Co(R™) x Z) = Z. Indeed, since the group for & is Z, there exists an
implementing unitary U such that &; = AdU (the adjoint action by U). Note also
that for the crossed product 2 x,, Z of a (unital) C*-algebra 2 by an action « of Z,
there exists an implementing unitary U such that UaU* = «1(a) for a € 2, where U
is not necessarily contained in 2l or its multiplier algebra (if 2 is non unital, and if
50, we can consider its unitization by C and the trivially extended action on it) (for
example, the rotation algebra generated by two unitaries U, V with VU = 20UV
for some real number @ can be written as the crossed product C(T) xp Z with the
action 6 by f-rotation on the torus T (cf. [1])). Therefore, for [p] the class in Z at
the upper left corner of the diagram, we have

a.([p]) = [AdU(p)] = [UpU~] = [p] = id([p])-

Moreover, note that there exists a homotopy path p; for 0 <t < 1 between UpU*
and p defined by

0) .«
Pt = Wy (I(; O)wt’ and

U o0 10
“’0_(0 U*)’ “’1_(0 1)

th(g ?)ut<U O)u;k for 0 <t <1, where

0 1

w — (cos(wt/Q) sin(ﬂ't/Z))
t sin(wt/2)  cos(wt/2)

(cf. [25]). When n is odd, we obtain the same conclusion for K-groups of Cy(R™) xZ
by the similar way.
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Furthermore, applying the P-V sequence to the crossed product Co(R™\ 0) x Z
in the left of the above exact sequence (E), we obtain

Ko(Co(R"\0)) %% Ko(Co(R™\ 0)) —— Ko(Co(R™\ 0) x4 Z)

I l

K1(Co(R™\ 0) 4 Z) «— Ki(Co(R"\0)) <% K1 (Co(R™\ 0)).
Moreover, for n > 2 we have

Ko(Co(R™\ 0)) == Ko(Co(R x S 1)) = K1 (C(S™™))
> K1 (Co(R" 1)1 2 K1 (Co(R™1))
>~ ( if n is odd, and Z if n is even,
K1(Co(R™\, 0)) = Ky (Co(R x §71)) = Ko(C(5"1)
=~ Ko(Co(R"™H)T) = Ko(Co(R"™) @ Z
27 ®Zif nis odd, and Z if n is even.

When n = 1, we obtain
Ko(Co(R\0)) = Ko(Co(R)) @ Ko(Co(R)) =2 K1(C)®» K1(C) =20

and K;(Co(R \ 0)) = Z2. Therefore, it follows that Ko(Co(R™ \ 0) x Z) = Z? and
Kl(CO(Rn \0) Dal Z) = ZQ.

Summing up, we obtain the following six-term exact sequence associated with
the above exact sequence (E):

72 Z Z
d |
Z Z 72

)

where 9 means the index map. Note that Ko(C(T)) 2 Z and K1(C(T)) 2 Z. It
follows from this commutative diagram that the map O is nonzero. Therefore, by
using [7] or [9], we have sr(Co(R™) X Z) > 2. By (F3), we conclude sr(C*(G) x4 Z) >
2.

To estimate the connected stable of C*(G) X4 Z, we use the P-V sequence:

Ko(CH(@) %% Ko(CH(@) —2— Ko(C*(G) x4 Z)
K((C*(G) %0 Z) «—— K(C*(@Q)) <% Ky(C*(@)).

Since G is a simply connected solvable Lie group, it is isomorphic to the k-times
successive semi-direct product: G T R xR x --- xR for k = dim G (see [6]). By
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using Connes’ Thom isomorphism for crossed products by R (cf. [2, Section 10.2])
repeatedly,

Gk—l) X R) = Kl(C*(Gk_l)) = Kl(C*(Gk_Q) X R)
Gr—2)) 2 --- 2 Zif k even, and 0 if k odd,
k—1) X R) = Ko(C*(G-1)) = Ko(C*(G—2) x R)
1(C*(Gg—2)) 2 --- =2 0if k even, and Z if k odd,

Q

where G = Gy = Gg_1 X R, G; = R and G; = G;_1 x R inductively for 1 <
I < k. Therefore, if dim G is even, we obtain K;(C*(G) x Z) = Z since the map
id — &, from Ko(C*(G)) in the P-V sequence is zero. If dim G is odd, we obtain
K1(C*(G) x Z) = Z since the map id — &, from K;(C*(G)) =& K¢(C) in the P-V
sequence is zero. Since K;(C*(G) x Z) is nonzero, we obtain csr(C*(G) x Z) > 2
by [4, Corollary 1.6]. O

Remark. When the action « is trivial, we have C*(G) x4 Z =2 C*(G) @ C*(Z) =
C*(G)® C(T). In addition, Cp(R™) x4 Z = Cy(R™ x T) so that sr(Co(R™ x T)) > 2
by (F2) since n > 1. Hence, sr(C*(G) ® C(T)) > 2. If G is a connected solvable
Lie group, then G/[G,G] is isomorphic to the product group R™ x T™ for some
n,m > 0. If n > 1, then we have sr(C*(G x4 Z)) > 2 by considering the quotient
from Co(R™ x Z™) x4 Z to Co(R™) x4 Z and by the same proof above.

Using (F4) we obtain sr(C*(G x4 Z)) < sr(C*(G)) + 1 for G a Lie group and
a an action. Note that C*(G) is non-unital in general (if G non-discrete). See
[17], [18] and [21] for the estimates of sr(C*(G)) for G certain (simply connected
solvable) Lie groups. See also [19] and [20] for G certain disconnected solvable Lie
groups.

As a comparison, we now consider the case of semi-direct products G x, Zj, of
simply connected solvable Lie groups GG by finite cyclic groups Z;. By the same
analysis as the above proof, the group C*-algebra C*(G x, Zj) has a quotient
isomorphic to Co(R™) x4 Zy, for n > 1. However, if & on R™ is trivial, then

Co(Rn> X Ly, = Co(Rn> ® C*(Zk) = C()(Rn) X C(Zk) = @kCO(Rn)

Therefore, if n = 1, then sr(Co(R™) x4 Z) = 1. Thus, we can not use the same
argument as the above proof. Even if n > 2, we can not use the exact sequence:
0 — Co(R™\0) xZj — Co(R™) xZy, — CxZj; — 0 as (E) in the proof. The reason
is that the index map of K-groups associated with this exact sequence vanishes since
K1 (C % 7Zy,) = K;(®*C) = 0. However, the estimate sr(Co(R") x Z) > 2 could be
deduced from that Co(R™ \ 0) x Z;, = Cp(Ry) @ C(S™) x Zy, and dim S™/Zy, > 2,
where S™ means the n-dimensional sphere.

We extensively consider the case of semi-direct products of connected solvable
Lie groups by Z. By a technical reason, connected solvable Lie groups are restricted
to be linearizable as follows:

Theorem 1.2. Let G be a linearizable connected solvable Lie group and G x4 Z a
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semi-direct product of G by Z. If G is noncompact, then
st(C*(G xq Z)) > 2

Proof. First recall that a connected solvable Lie group G is linearizable, that is, it
has a faithful finite-dimensional representation if and only if G is isomorphic to a
semi-direct product N x T* of a simply connected solvable Lie group N by a torus
T* for k > 0 ([10, Theorem 7.1 in page 66]). Thus, we have

C*(G g Z) =2 C*(N % TF) x4 Z = (C*(N) x TF) x,, Z.

Note the quotient: (C*(N)xT*) xqZ — (Co(R™) x T*) % (4,a) Z, where N/[N, N] =
R™ for some n > 1 since N is a simply connected solvable Lie group and G is
noncompact, and (&, o) means that the action by Z on Cy(R") is &, and on T is
«. Since the origin 0 in R™ is fixed under &, we have

(EBa): 0—=(CoR"\0)xTF)xzZ=7—
(Co(R™) % T*) ¥ (4,0) Z — C*(T*) x Z — 0.
We first compute the K-groups of the crossed product Cy(R™) x T* as follows:
Ko(Co(R™) » TF) = KG (Co(R™))
_ K5 (C) 2 Ko(C*(T%)) 2 Ko(Co(ZF)) = @ Z if n even,
T KT (Co(R)) = KT (C) 2 K1 (C*(T%)) =2 K1(Co(ZF)) =0 if n odd,

where KT" (+) for * = 0,1 means the equivariant K-theory (cf. [2, Sections 11.7 and
11.9] for the basic formula for crossed products by compact groups and for the Bott
periodicity). Furthermore,

K1(Co(R™) x TF) 2 Ko(Co(R) ® Co(R™) x TF) = KT (Co(R™1))
o KT (Co(R)) = KT (C) = K1 (C*(T*)) = K1 (Co(ZF)) =0 if n even,
T KTN(C) = Ko(C*(TF)) = Ko(Co(ZF)) = @y Z if n is odd.

Applying the P-V sequence to (Co(R™) x T*) x Z in the middle of the above exact
sequence (FEs), we obtain that if n is even, then

@Zkz —— @Zkz —_— Ko((CO(Rn) A Tk) A Z)
Ki((CoR) x TF) X Z) «—r 0 —— 0

(Co(R™) x T*) x Z) = @y Z for x = 0,1. If n is odd, then
— 0 —— Ko((Co(R™) x TF) x Z)

")
«(
I l
)

K1((Co(R™) X TF) X Z) +—— @pl g+l

which implies K
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which implies K, ((Co(R"™) x T*) x Z) = @y Z for = 0, 1.
We next compute the K-groups of the crossed product Co(R™\0) xT* as follows:

Ko(Co(R™\ 0) @ TF) 2 K7 (Co(R™ \ 0)) = Kj (Co(R x §™71))
> K1 (C(S" 1) 2 KT (Co(R™1)*) = KT (Co(R™1))

o JET (Co(R)) = KT"(C) 2 Ko(C*(TF)) = Ko(Co(Z¥)) = @l if n even,
T KTN(C) 2 K (CF(T)) = K1 (Co(ZF)) = 0 if n odd.

Furthermore,
Ka(ColR™\ 0) % T¥) = KT (Co(R™\ 0))
= KT (Co(R x §"71) 2 KJ (C(5™7Y) = K§ - (Co(R™1)™)
KT (Co(R™1)) @ Ko(C*(T*))
N {Kér'“(Co( ) @ Ko(Co(Z¥)) if n is even

HZ

ng (C) @ Ko(Co(ZF) if n is odd

)
o J Ki(C*(TF)) @ (©2,7Z)
| Ko(CH(TH)) @ (@2,2)

= Py, L if n is even
> (@pZ) ® (®z,Z) if nis odd.

Applying the P-V sequence to (Co(R™ \ 0) x T¥) x Z = J in the left of the above
exact sequence (Es), we obtain that if n is even, then

S/ e OpZ ——— Ko((Co(R™\ 0) x TF) x Z)
Kl((C()(Rn\O) X Tk) X Z) — @ZkZ — @Zkz

which implies K, ((Co(R™\ 0) x T*) x Z) = (©4+Z) & (©z+Z) for x = 0,1. Further-
more, if n is odd, then

0 — 0 — Ko(
K1(3) e (OzZ) ® (BgrZ) «———— (DzrZ) ® (DzrZ)

which implies K, ((Co(R™ \ 0) x TF) x Z) = (& Z) © (D Z) for x = 0, 1.

Furthermore, note that C*(T¥) =2 Cy(Z*). Then Ko(Co(Z*)) = @Z and
K1(Co(Z*)) = 0. Applying the P-V sequence to C*(T*) x Z in the right of the
above exact sequence (Fs), we obtain

Byl — Bl ——— Ko(c*(Tk) X Z)

I l

K\(C*(TF) N Z) — 0 «—n 0
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Hence, it follows that K, (C*(TF) x Z) & @z Z for x = 0, 1.
Summing up the above argument, we obtain the following six-term exact se-
quence of K-groups associated with the above exact sequence:

(BprZ) & (PgrZ) —— Sl —— Y/
o] |
SzrZ —— Opl —— (DprZ) ® (DzrZ)

Therefore, the index map 9 is nonzero. Hence sr((Co(R™) x T*) x Z) > 2 (cf. [7],
[9]). Thus, sr(C*(G x4 Z)) > 2. O

Remark. Let G = N x T* be as above. If K;(C*(G x4 Z)) is nonzero, we obtain
cst(C*(G Xy Z)) > 2 by [4, Corollary 1.6]. In fact, by the P-V sequence,

Ko(C*(@)) —— Ko(C"(G)) —— Ko(C*(G) % Z)

I l

Ki(CH(G) ¥a Z) —— Ki(C7(Q)) ——  Ki(C*(G))

and K, (C*(GQ)) &2 K.(C*(N)xTk) = ka (C*(N)) for x = 0,1. Since N is a simply
connected solvable Lie group, it is a successive semi-direct product by R. Thus, if
the Thom isomorphism for equivalent K-theory is true, we obtain

K. (C*(N) = K
~ K7, (C7 (N
= K.y, (C7(TH))
2 PpuZif x+s=

\_/ * 5

Y(C*(Nyo1) ¥ R) 2 KT (CF(Ny1))
xR) ... = KT (C)

Koy (Co(Zk))
0 (mod 1), and 0 if ¥+ s =1 (mod 1),

Il

where N = Ny, = N,_1 xR, N =R, N; = N;_; x R inductively for 1 <[ < s and
s = dim N. Therefore, we obtain K;(C*(G) x4 Z) = ®*Z. However, the Thom
isomorphism for equivalent K-theory seems to be unknown in the literature so far,
and it is desirable but might be wrong in general. Also, since N is isomorphic to
R xR x --- xR for some f > 1, if T* is non-trivial only on R/, then

C*(N)xTF=C*(R/) xT* xR--- xR, and
K (C*RI) M TF xR % R) 2 Koy s (C*(R) 1 TF) 2 KT, 4 (Co(RY))
> K\, (€)= Koy (O°(TY)
for x = 0,1 by using the Connes’ Thom isomorphism and the Bott periodisity (cf.
[12, Section 6.3]). An action of T* on R is always trivial, but an action of T* on

R¢ for e > 2 is nontrivial in general so that an action of T* does not necessarily
commute with (s — f)-actions of R as above.
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If a linearizable connected solvable Lie group is compact, then it is isomorphic
to T*. In this case, we obtain the following:

Theorem 1.3. For a semi-direct product T* x4 Z, we have
st(C* (T x4 Z)) = 1.

Moreover, we have csr(C*(T* %, Z)) = 2.

As a note, the proof below includes the case by case study as examples for the
convenience, and the general case is given at the bottom of the proof.
Proof. Note that C*(TF x,, Z) = C*(T*) x4 Z = Cy(Z*) x4 Z. If & is trivial on a
direct factor Z! of ZF, then

Co(ZF) x4 7.2 Co(Z) @ Co(ZF 1) x4 2 @5 Co(ZF7Y) x4 Z.

Therefore, we may assume that & is nontrivial on each direct factor of ZF.

Case 1: k = 1. Note that an automorphism of T is either trivial or the reflection.
When a; is the reflection, the duality (a1(z),n) = ()" = (2)™" = (3,—n) =
(2,é1(n)) for z € T and n € Z holds. Thus, we consider the decomposition Z =
{0}UUnez, {n, —n} (a disjoint union). Then we have the direct sum decomposition:
Co(Z)xaZ = C*(Z)®(®2, C(X2) x4 Z), where Xo = {£n}. Moreover, since 47 = 1
on Xo,

0— S(C(XQ) A& Zg) — C(XQ) A& 7 — C(X2> A& ZQ — O7

where S(C(X3) X4 Z2) means the suspension Cy(R) ® C(X3) Xg Za, and we have
C(X2) x4 Zay = M2(C) (cf. [2] for the exact sequence of crossed products by Z with
periods). By the six-term exact sequence of K-groups,

0 —— K0<C(X2) X4 Z) — Z

d !

0 «—— Kl(C(XQ) A& Z) — 7.

Therefore, the index map 9 is zero. Since sr(S(M2(C))) = 1 and sr(M3(C)) =1
by [13, Theorem 6.1], it follows from [7] or [9] that sr(C(X3) x4 Z) = 1. Hence
st(Co(Z) 16 Z) = 1.

Case 2: k > 1 and & is the reflection on each direct factor Z of ZF. By the
duality, &1(n) = (-n) = ((-n;)) for n = (n;) € Z*. Thus, we have the orbit
decomposion of Z* (a disjoint union): Z¥ = {0k} U (U(ze\ {0,1)/2, {1, —n}), where
(ZF\ {04})/Zy = (ZF \ {01.})/Z means the orbit space of Z¥ \ {0;} by Z. Then we
have 00<Zk) X & 7 = C*(Z) 5) (@(Zk\{ok})/ZZC(X2) X & Z), where X2 = {i’I’L} By
the same analysis as Case 1, we obtain sr(Co(Z*) x4 Z) = 1.

Case 3: k =2 and « is the permutation of T2. By the duality,

<a1(z,w), (57t)> =w'z = <(va)7 (t,5)> = <(va)vé¢1(87t)>
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for z,w € T? and s,t € Z. Then we have the following orbit decomposition:
Z2 = (UTLEZ{nv n}) U (I—ls;étEZ{sa t})

Thus, we have Co(ZZ) Xg L = (EBZC*(Z)) D (EBS;éthO(XQ) Xa Z), where Xy =
{s,t}. By the same analysis as Case 1, we obtain sr(C(Xz) x4 Z) = 1. Hence,
st(Co(Z?) x4 Z) = 1 follows.

Case 4: k > 2 and « is a finite composition of the permutations and the
reflections of each direct factor T of T*. In this case, af = 1 for some n > 2. For
example, if o is given by a;(z,w) = (w, 2) for z,w € T, then o = 1. By the duality,

(a1(z,w), (s,1)) = ((w,2),(s,1) = wz™" = ((z,w),(t,5)) = ((z,w),d1(s,1)).
Therefore, &7 = 1 on Z2. When 4} = 1 on Z*, we consider the decomposition:

7ZF = F U (Z* \ F), where the subset F consists of all fixed points of Z* under
&. Then we have CQ(Zk) A& 7. = (EBFC*(Z)) D (EB(ZK\F)/ZnC(Xn) X Z), where Xn
means an orbit by & consisting of n points in Z¥\ F, and (Z*\ F)/Z,, = (ZF\ F)/Z
means the orbit space of Z* \ F under &. Moreover, as in the Case 1, we have the
following exact sequence:

0— S(C(X,) xXZy,) — C(Xp) XZ— C(Xy,) X Zy — 0
and C(X,,) X Z,, = M, (C). Furthermore, by the six-term exact sequence,
0 —— Ko(C(Xn) A& Z) — Z

d l

0 «—— Kl(C(Xn) A4 Z) — 7.

Hence, the index map 9 is zero. Since sr(SM,(C)) = 1 and sr(M,(C)) = 1 by
[13, Theorem 6.1], we have sr(C(X,) X Z) = 1 by [7] or [9]. Therefore, we obtain
st(Co(ZF) x4 Z) = 1.
Case 5: the action « is given by ay(z,w) — (z, zw) for z,w € T. By the duality,
(en(z,w), (5,1)) = (2, 2w), (s, 1)) = (2)" (zw)’
= ((z,w), (s + t,t)) = ((z,w), &1(s,1)).

Thus, we consider the decomposition: Z? = (Z x {0}) U (Z x (Z\ {0})). Then
Co(Z x {0}) x4 Z = Co(Z) @ C*(Z) =2 Co(Z x T),
Co(Z x (Z\{0})) ¥4 Z = @z {0y Co(Z x {t}) X4 Z = Dy (03 K.
Since sr(Co(Z x T)) = 1 and sr(K) = 1 ([13]), we obtain sr(Cy(Z?) x5 Z) = 1.

Case 6: the action « is given by a (21, 22, 23) — (21, 2122, 212223) for 21, 29,23 €
T. By the duality,
(o121, 22, 23), (51, 52, 83)) = 27" (2122)°% (212223)°?
= ((21, 22, 23), (51 + 82 + 83, 82 + 83, 83))

= ((#1, 22, 23), 61 (51, 52, S3))-
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Thus, Z? = (Z x {0} x {0}) U (Z x (Z\ {0}) x {0}) U (Z2 x (Z\ {0})), and

Co(Z x {0} x {0}) x4 Z = Cy(Z) @ C*(Z) = Cy(Z x T),
Co(Z X (Z \ {O}) X {0}) X 2= @Z\{O}CO(Z) X 1= @Z\{O}Ka
Co(Z? x (Z\{0})) X4 Z = B2 2\ {0})/2C0(Z) Xa L = Sz2 4 (z)0}) /2K,
where Z? x (Z\ {0})/Z means the orbit space of Z? x (Z\ {0}) by &. Therefore,
we deduce sr(Co(Z3) x4 Z) = 1.

The general case: any action « of Z on T* is a finite composition of the re-
flections, the permutations and the similar actions as in Cases 5 and 6, and the
direct sum decomposition of Cy(Z*) x4 Z is obtained as the above cases. In fact,
we consider the decomposition: Z* = F U (U,¢z . Pn) U S, where F' consists of all
fixed points of Z* under &, and any point of P, has the period n under &, and &

on S is free. Note that those subsets F|, P,,S correspond to the cases, where the
stabilizers of points of Z* are either Z, Z,, or {0} respectively. Then

Co(F) Xa L= Co(F) ®C*(Z) = Co(F X T),
Co(Pn) Ha 7= @P,L/ZnC(Xn) N Za
Co(S) X6 Z = @g/7C0(Z) x4 L = Dg/zK,

where P, /Z, = P,/Z, S/Z are the orbit spaces of P,, S by & respectively, and
X, is an orbit by & consisting of n points in P,. As in the Case 4, we obtain
sr(C(X,) g Z) = 1. Therefore, we obtain sr(Co(Z™) x4 Z) = 1.

To estimate the connected stable rank of C*(T* x, Z), we use the P-V sequence:

Ko(C*(T*))  ——— Ko(C*(T*)) —— Ko(C*(T*) x Z)
K1(C*(T*) % Z) «—— K1(C*(T*)) «———  Ko(C*(T*)).

Since Ko(C*(T*)) = Ko(Co(Z*)) = @z Z and K(C*(TF)) = K, (Co(Z*)) =2 0, it
follows that K;(C*(T¥)xZ) = @, Z. By [4, Corollary 1.6], we obtain csr(C*(T* x,,
7)) > 2. On the other hand, since we have proved sr(C*(T* x,, Z)) = 1 above, the
conclusion follows from (F1). O

Corollary 1.4. For a semi-direct product T™ X, Zy,, we have

st(C*(T" x4 Zy)) = 1.

Proof. Note that C*(T™ x4 Zy) = Co(Z™) x4 Zi, and the following exact sequence:
0 — Co(R) ® (Co(Z™) x4 Zk) — Co(Z") Xa Z — Co(Z™) x4 Zi, — 0.

Then use Theorem 1.3 and (F3). O
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We say that a connected amenable Lie group G is linearizable if it is isomor-
phic to a semi-direct product N x K of a simply connected solvable Lie group N
by a compact connected Lie group K. This is reasonable from the definition for
connected solvable Lie groups to be linearlizable (cf. Theorem 1.2). See also [3] for
the structure of amenable locally compact groups and their group C*-algebras.

Theorem 1.5. Let G be a linearizable connected amenable Lie group and G X, Z
a semi-direct product of G by Z. If G is noncompact, then

st(C*(G x4 Z)) > 2.

Proof. The line of the proof is the same as that of Theorem 1.2. Note that
C(GHoZ)2C*(G) X0 Z = (C*(N) x K) x4 Z.

Since K is compact, we can use the equivaliant K-theory for computing K-groups as
given in the proof of Theorem 1.2 by replacing the torus T* with K. Furthermore,
since C*(K) is isomorphic to the direct sum @ye gr My, (C) where K is the unitary
dual of irreducible unitary representations of K up to unitary equivalence and ny
is the dimension of A. Therefore,

Il

Ko(C™(K))
K1 (C7(K))

Ko(®rexr M, (C)) = ®rrZ and
K1 (@®xexr My, (C)) =2 @gna0=0.

1%

O

Corollary 1.6. Let G be a noncompact, linearizable connected amenable Lie group.
If st(C*(G)) = 1, then

SI(C*(G %o Z)) = 2 = st(C*(G)) + 1.

Proof. Use Theorem 1.5 and (F4). O

Remark. This consequence should be interesting. See [23], [24], [17] and [22] for
G such that sr(C*(G)) = 1.

Moreover, we obtain

Theorem 1.7. If K is a compact Lie group, then
st(C* (K %, 2)) = 1.
Moreover, we have cst(C*(K X4 Z)) = 2. In addition, st(C*(K X4 Zi)) =1, but

csr(C* (K Xo Zy)) = 1.
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Proof. The line of the proof for sr(C*(K x4 Z)) = 1 is the same as the general case
in the proof of Theorem 1.3. Note that
C (KXo Z) =2 C*(K) X Z
= (Brein My, (C)) X Z = To(K", {M,, (C)}rern) Xa Z,
where the dual group K is discrete since K is compact, and the last crossed product
by Z involves To(K",{M,, (C)}cx~) the C*-algebra of a continuous field on K”
with fibers M, (C) (cf. [3] for C*-algebras of continuous fields). Furthermore, this
crossed product is decomposed into the following direct sum:
Lo(F, {Mn, (C)}rer) ¥a Z
® (Bnez, Lo(Pny {Mn, (C)}rep,) ¥a Z)
® (®s5/2L'0(Z, {Mn, (C)}rez) x4 Z),
where F is the set of all fixed points in K under &, and P, is the set of all points
with period n under &, and S is the set of all points with no period under & so that
& is free on S so that .S = UZ a disjoint union of copies of Z by orbit decomposition,
and those crossed products involve the C*-algebras of continuous fields on F', P,,
Z with fibers M,,, (C) respectively. Moreover, we have
Lo(F,{Mn, (C)}rer) ¥a Z = (BaerMn, (C)) ® C(T),
Lo(Pn, {My,(C)}rep,) ¥a Z = M,, (C)® (®Pn/ZC(X7l) X L),

To(Z,{Mp, (C)}rez) Xa Z = M,, (C) ® Co(Z) x6aZ = M,, (C)®K,
where note that the dimension ny is the same for A in an orbit under & by definition
of the action a.

Since K1 (C*(K) X Z) = @k~ Z by using the P-V sequence as given in the proof
of Theorem 1.3, we obtain csr(C*(K) xZ) > 2 by [4, Corollary 1.6]. Then use (F1).

See also the proof of Corollary 1.4 for sr(C*(K x4 Z)) = 1.
By [14, Theorem 2.10] it follows from sr(C*(K x4 Zx)) = 1 that

GLl(C*(K NQZ}C))/GLl(C*(K NaZk))O = Kl(C*(K maZk)).

Also, we have csr(C*(K Xqo Zy)) < 2 by (F1). By using the similar analysis above,
C*(K x4 Zy) is decomposed into a direct sum with the following direct summands:

Lo(F,AMy, (C)}rer) Xa Zy = (BrerM,, (C)) @ C*(Zy),
FO(Qla {M"D\ (C)}AGQl) X Lk = Mn>\ ((C) ® (@Ql/ZkC(}/l) A Zk)a

where F' is the set of all fixed points in K under &, and for some 0 < [ < k,
Q; is the set of all points such that their orbits Y; are homeomorphic to Zy/Z;.
Furthermore, the imprimitivity theorem ([5]) implies

C(Y}) A& Zk = C(Zk/Zl) A& Zk
& C(Zy) @ K(I*(Zi /) = C(Zy) © My (C),
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where K(I2(Zy/Z;)) means the C*-algebra of compact operators on the Hilbert
space 12(Zy,/7;) = C*/'. Note that the dual group Z. = Z, for s € N. Therefore,
the Kj-group of C*(K X, Z) is decomposed into a direct sum with the following
direct summands:

K1((@rxerM,, (C)) ® C*(Z)) = ©rer K1 (M, (C) @ C(Zy)) =0,
K1(M, (C) ® (9,2, C(Z1) @ My;1(C))) = @@, /2, K1(C(Zi) @ My(C)) 2 0.

Thus, K1(C*(K x4 Zy)) is trivial. Hence we conclude csr(C* (K x4 Zg)) =1. O
Corollary 1.8. If K is a compact Lie group, then

st(C* (K x4 7))

=1 (C*(K)), cst(C*(K xqZ)) =csr(C*(K)) + 1,
st(C*(K xq Zi)) =1

st(C*(K)), csr(C*(K XoZi)) =1=csr(C*(K)).

Remark. This consequence should be interesting.

What’s more, we first consider the case of semi-direct products of amenable
locally compact groups as follows:

Proposition 1.9. Let G, H be amenable locally compact groups. Then
st(C*(G x H)) > sr(C*(H)).
Thus, if st(C*(H)) > 2, then st(C*(G x H)) > 2. In particular, if H = ZF, then

st(C*(G % ZF)) > [k/2] + 1.

Proof. Note that C*(G x H) = C*(G) x H, and the quotient: C*(G) x H —
C*(H), which is deduced from that the trivial representation of C*(G) is closed
in the spectrum of C*(G), and is stable under the action of H. Hence, by (F3)
we obtain sr(C*(G x H)) > sr(C*(H)). On the other hand, C*(Z*) = C(T*) and
st(C(T*)) = [k/2] + 1 by (F2). Hence, sr(C*(G x ZF)) > [k/2] + 1. O

Remark. Note that sr(C*(Z)) = sr(C(T)) = 1. Therefore, the proofs of Theorems
1.1, 1.2 and 1.5 are more complicated than that of this proposition.

We next consider the case of semi-direct products G x H of amenable locally
compact groups G by non-compact connected semi-simple Lie groups H. Note that
if the quotient of a connected Lie group by the radical, that is, the maximal normal
solvable Lie subgroup is compact, then the Lie group is amenable. (cf. [3, Section
18.3]). For H a non-compact connected semi-simple Lie group, let r(H) denote the
real rank of H, which is defined to be the real dimension of A for the Iwasawa
decomposition H = KAN. Let C*(G »x H) be the reduced group C*-algebra of
G x H (cf. [16]). Since H is non-amenable, C*(G x H) # C*(G x H) (cf. [11]).
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Proposition 1.10. Let G be an amenable locally compact group and H a non-
compact connected semi-simple Lie group. Then

st(CF (G x H)) > CF (H).

Ifv(H) > 2, then st(Cf (G x H)) > 2 and, in addition, st(C*(G x H)) > 2.

Proof. Let C*(G x H) be the full group C*-algebra of G x H. Then C*(G x H) =
C*(G) x H and C*(G x H) =2 C*(G) %, H the reduced crossed product of C*(G)
by H. Moreover, since the trivial representation of G is fixed under the action of
H, we have the following diagram:

C*(G)xH —— C*(H) —— 0,
C*(G)x, H —— C}(H) —— 0.

Then use (F3). By [16], if r(H) > 2, then sr(C}(H)) = 2. Therefore, we obtain the
second claim by (F3). O

Remark. For example, we may take SL,(R) for n > 3 as H in the statement (cf.
[16]). Note that r(SL2(R)) = 1. In this case, we know that

st(CF(R? % SLy(R))) =1, sr(CH((R? x R) x SLy(R))) = 2,

where the actions of SLy(R) on R? are the matrix multiplication, and the action
on R is trivial (see [22]).
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