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Abstract. We define weak distributive n-semilattices and n-lattices, using variants of the

absorption law and those of the distributive law. From a weak distributive n-semilattice,

we construct direct system of subalgebras which are weak distributive n-lattices and show

that its direct limit is a reflection of the category wDn-SLatt of the weak distributive

n-semilattices.

1. Introduction

A semilattice is an algebra, S = (S,∨), with one binary operation ∨ that is
idempotent, commutative and associative, that is, the following identities hold in
S:

x ∨ x = x (idempotence),
x ∨ y = y ∨ x (commutativity),

(x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity).

An algebra (B,∨,∧) with two binary operations ∨ and ∧ is called a bisemilattice if
both of its reducts (B,∨) and (B,∧) are semilattices. This notion was introduced
by J. Plonka in [8] under the name quasilattice. However, it is called bisemilattice by
other author ([3], [6], [7]). In particular, a bisemilattice is distributive if it satisfies
the following two distributivity:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Plonka has generalized distributive bisemilattice to distributive n-semilattice and
distributive n-lattice([9]). A distributive n-semilattice (S, F ) which is an algebra
with a family F = {◦i | i ∈ [n]} of n binary semilattice operations on a common
set S in which each pair of semilattice operations satisfy both distributive laws.
A distributive n-semilattice (S, F ) is called a distributive n-lattice if it satisfies

Received January 16, 2006.
2000 Mathematics Subject Classification: 06A12, 06B99, 18A30, 18A40.
Key words and phrases: n-semilattice, n-lattice, weak distributive, generalized absorp-

tion law, reflection, direct limit.

227



228 Seon-Ju Lim

moreover the following generalized absorption law for the sequence I = (1, 2, · · · , n)
of indices of F = {◦i | i ∈ [n]}

a ◦1 (a ◦2 (· · · (a ◦n−1 (a ◦n b)) · · · )) = a.

In 1971, R. Padmanbhan define a weak distributive bisemilattice, which is a bisemi-
lattice satisfying the weak distributivity (it was studied under the name quasilattice
in [7]):

((a ∧ b) ∨ c) ∧ (b ∨ c) = (a ∧ b) ∨ c and ((a ∨ b) ∧ c) ∨ (b ∧ c) = (a ∨ b) ∧ c.

In this paper, we are concerned with categorical properties of certain algebras which
we call weak distributive n-semilattices. These algebras generalize weak distributive
bisemilattices. A weak distributive n-semilattice is an algebra with a family of n
binary semilattice operations on a common underlying set which are mutually weak
distributive. A weak distributive n-semilattice will be called a weak distributive
n-lattice, if it satisfies the generalized absorption law, which generalizes the absorp-
tion law for lattices. Furthermore, weak distributive n-semilattices (or weak dis-
tributive n-lattices) generalize distributive n-semilattices (or distributive n-lattices,
respectively). We show that every weak distributive n-semilattices has a partition
consisting of weak distributive n-lattices and then the family of week distributive
n-lattices in the partition forms a direct system in the category wDn-Latt of weak
distributive n-lattices and homomorphisms. Furthermore, we prove that its direct
limit gives rise to the reflection. For the terminology not introduced in the paper,
we refer to [1] for the category theory, [2] for the ordered sets and [4], [5] for the
abstract algebra.

2. Weak distributive n-semilattices

Let us start with a definition of weak distributive n-semilattice which is a gen-
eralization of both weak distributive bisemilattice and distributive n-semilattice.

Definition 2.1. An algebra W = (W,F ) is called a weak distributive n-semilattice
if it has a family F = {◦i | i ∈ [n]} consisting of n binary operations which satisfy
the following equations for any i, j ∈ I:

a ◦i a = a (idempotence),
a ◦i b = b ◦i a (commutativity),

(a ◦i b) ◦i c = a ◦i (b ◦i c) (associativity),
((a ◦i b) ◦j c) ◦i (b ◦j c) = (a ◦i b) ◦j c (weak distributivity).

A weak distributive n-semilattice is called a weak distributive n-lattice if it satisfies
the generalized absorption law:

(∗) a ◦σ(1)

(
a ◦σ(2)

(
· · ·

(
a ◦σ(n−1)

(
a ◦σ(n) b

))
· · ·

))
= a
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for any permutation σ ∈ Sym(n).

In the case n = 2, it is clear that a weak distributive n-semilattice is a weak
distributive bisemilattice and a weak distributive n-lattice is a lattice. In a weak
distributive n-lattice, the condition (∗) can be reduced to the condition

a ◦1 (a ◦2 (· · · (a ◦n−1 (a ◦n b)) · · · )) = a,

because it can be easily shown by the weak distributivity. A distributive
n-semilattice (or n-lattice) is a weak distributive n-semilattice (or n-lattice,
respectively). But a weak distributive n-semilattice (or n-lattice) need not be a
distributive n-semilattice (or n-lattices, respectively).

From now on, an n-semilattice W = (W,F ) with a family F = {◦i | i ∈ [n]} of
n semilattice operations will be denoted by W = (W,F ) or W , simply.

Remark 2.2.

(1) It is easy to see that an n-semilattice W = (W,F ) is weak distributive if and
only if a ◦i b = b implies (a ◦j c) ◦i (b ◦j c) = b ◦j c for any j ∈ [n] and any
c ∈ W .

(2) Let (W,F ) be a weak distributive n-semilattice. If a ◦i b = a and c ◦i d = c,
then for any j ∈ [n], we have by (1),

(a ◦j c) ◦i (b ◦j d) = a ◦j c.

Now we obtain some properties of weak distributive n-semilattices and n-
lattices, which will be needed in the formation of the direct system in the category
wDn-Latt of weak distributive n-lattices and homomorphisms.

Lemma 2.3. Let W = (W,F ) be a weak distributive n-semilattice. Then for any
i, j ∈ [n], the following equations hold.

a ◦i (b ◦j a) = (a ◦i b) ◦j a,(1)
a ◦i (a ◦j b) ◦i (c ◦j b) = a ◦i (c ◦j b) ,(2)

a ◦i (a ◦j b) ◦i (a ◦j b ◦j c) = a ◦i (a ◦j b ◦j c) ,(3)
a ◦i b ◦i (a ◦j c) = a ◦i b ◦i (b ◦j c) ,(4)

a ◦i (a ◦j (b ◦i c)) = a ◦i (a ◦j b) ◦i (a ◦j c) ,(5)
a ◦i (a ◦j (b ◦i (b ◦j c))) = a ◦i (a ◦j (c ◦i (c ◦j b))) ,(6)
a ◦i (a ◦j (b ◦i (b ◦j c))) = a ◦i (a ◦j b) ◦i ((a ◦i (a ◦j b)) ◦j c) ,(7)

a ◦i b ◦i ((a ◦i b) ◦j c) = a ◦i (a ◦j c) ◦i b = a ◦i b ◦i (b ◦j c) ,(8)
a ◦i (a ◦j (b ◦i (b ◦j (a ◦i b)))) = a ◦i (a ◦j b) .(9)
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Proof. (1) It follows from the definition of weak distributive n-semilattice.
(2) From the associativity, weak distributivity and (2) of Remark 2.2, we have

a ◦i (a ◦j b) ◦i (c ◦j b) = ((c ◦j b) ◦i a) ◦i (a ◦j b)
= (((c ◦j b) ◦i a) ◦j (a ◦i b)) ◦i (a ◦j b)
= ((c ◦j b) ◦i a) ◦j (b ◦i a) = (c ◦j b) ◦i a.

(3) Equation (3) follows from (2) by the substitution b = a ◦j b.
(4) From (2),

a ◦i b ◦i (a ◦j c) = a ◦i (b ◦i (a ◦j c))
= a ◦i (b ◦i (b ◦j c) ◦i (a ◦j c))
= a ◦i (b ◦j c) ◦i b ◦i (a ◦j c)
= b ◦i (a ◦i (a ◦j c) ◦i (b ◦j c))
= b ◦i (a ◦i (b ◦j c))
= a ◦i b ◦i (b ◦j c) .

(5) Using (4) and the weak distributivity, we obtain

a ◦i (a ◦j b) ◦i (a ◦j c) = a ◦i (a ◦j b) ◦i (a ◦j b ◦j c)
= a ◦i ((a ◦j b) ◦j ((a ◦j b) ◦i c))
= a ◦i ((a ◦j b) ◦j (b ◦i c) ◦j ((a ◦j b) ◦i c))
= a ◦i ((a ◦j b) ◦j (b ◦i c) ◦j ((b ◦i c) ◦i c))
= a ◦i ((a ◦j b) ◦j (b ◦i c))
= a ◦i (a ◦j (b ◦i c)) ◦i ((a ◦j b) ◦j (b ◦i c))
= a ◦i (a ◦j (b ◦i c)) ◦i (a ◦j b ◦j (b ◦i c))
= a ◦i (a ◦j (b ◦i c)) .

(6) Using (1) and (2), we have

a ◦i (a ◦j (b ◦i (b ◦j c))) = a ◦i (a ◦j b ◦j (b ◦i c))
= a ◦i (a ◦j (b ◦i c)) ◦i (a ◦j b ◦j (b ◦i c))
= ((a ◦i b ◦i c) ◦j a) ◦i (a ◦j b ◦j (b ◦i c))
= a ◦j (a ◦i b ◦i c) ,

and similarly, a ◦i (a ◦j (c ◦i (c ◦j b))) = a ◦j (a ◦i b ◦i c) . It is easy to show that
equation (7) hold using (1) and (5). Equations (8) and (9) follow from (4) by the
substitution b = a ◦i b and (1), respectively. This completes the proof. �

Note that a weak distributive n-semilattice W = (W,F ) is an algebra of type n.
Then we may denote the operations of W by ◦1, ◦2, · · · , ◦n. We observe that for any
k ∈ [n], there is a subsequence K = (i1, i2, · · · , ik) of the sequence I = (1, 2, · · · , n).
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In the following, we denote a◦i1

(
a ◦i2

(
· · ·

(
a ◦ik−1 (a ◦ik

b)
)
· · ·

))
by fi1,i2,··· ,ik

(a, b)
or fK (a, b) for the convenience.

Lemma 2.4. If W = (W,F ) is a weak distributive n-semilattice, then for any
i ∈ [n], we have the following equations:

(1) fI (a, b ◦i c) = fI (a, b) ◦i fI (a, c) and fI (a ◦i b, c) = fI (a, c) ◦i fI (b, c),

(2) fI (a ◦i b, a) = a ◦i b = fI (a ◦i b, b),

(3) fK (fK (a, b) , c) = fK (a, fK (b, c)) = fK (a, fK (c, b)) for any nonempty sub-
sequence K of I.

Proof. (1) For any i, k ∈ [n], we denote the subsequences (1, 2, · · · , i) and
(1, 2, · · · , k − 1, k + 1, · · · , i) of the sequence I = (1, 2, · · · , n) by Ii and Ii − {k},
respectively. Using (5) and (8) of Lemma 2.3., we have

fI (a, b ◦i c) = fIn−1 (a, a ◦n (b ◦i c))
= fIn−1−{i} (a, a ◦i (a ◦n (b ◦i c)))
= fIn−1−{i} (a, a ◦i (a ◦n b) ◦i (a ◦n c))
= fIn−2 (a, (a ◦n−1 (a ◦n b)) ◦i (a ◦n−1 (a ◦n c)))
= fIn−2 (a, fn−1,n (a, b) ◦i fn−1,n (a, c))
= fIn−3 (a, a ◦n−2 (fn−1,n (a, b) ◦i fn−1,n (a, c)))
= fIn−3 (a, fn−2,n−1,n (a, b) ◦i fn−2,n−1,n (a, c))
= a ◦i fI−{i} (a, b) ◦i a ◦i fI−{i} (a, c)
= fI (a, b) ◦i fI (a, c)

and the second part is proved from (8) of Lemma 2.3 and idempotence ;

fI (a ◦i b, c) = fIn−1−{i} (a ◦i b, (a ◦i b) ◦i ((a ◦i b) ◦n c))
= fIn−1−{i} (a ◦i b, (a ◦i b) ◦i (a ◦n c) ◦i (a ◦i b) ◦i (b ◦n c))
= fIn−1 (a ◦i b, (a ◦n c) ◦i (b ◦n c))
= fIn−1 (a ◦i b, a ◦n c) ◦i fIn−1 (a ◦i b, b ◦n c)
= fIn−2 (a ◦i b, (a ◦i b) ◦n−1 (a ◦n c)) ◦i fIn−2 (a ◦i b, (a ◦i b) ◦n−1 (b ◦n c))
= fIn−2−{i} (a ◦i b, a ◦i b ◦i ((a ◦i b) ◦n−1 (a ◦n c)))

◦i fIn−2−{i} (a ◦i b, a ◦i b ◦i ((a ◦i b) ◦n−1 (b ◦n c)))
= fIn−2−{i} (a ◦i b, a ◦i b ◦i (a ◦n−1 (a ◦n c)))

◦i fIn−2−{i} (a ◦i b, a ◦i b ◦i (b ◦n−1 (b ◦n c)))
= fIn−3 (a ◦i b, (a ◦i b) ◦n−2 (a ◦n−1 (a ◦n c)))

◦i fIn−3 (a ◦i b, a ◦i b ◦n−2 (b ◦n−1 (b ◦n c)))
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= fIn−3−{i} (a ◦i b, (a ◦i b) ◦i (a ◦n−2 (a ◦n−1 (a ◦n c))))
◦i fIn−3−{i} (a ◦i b, (a ◦i b) ◦i (b ◦n−2 (b ◦n−1 (b ◦n c))))

...
= f1,i

(
a ◦i b, fI−{1,i} (a, c)

)
◦i f1,i

(
a ◦i b, fI−{1,i} (b, c)

)
= (a ◦i b) ◦i

(
(a ◦i b) ◦1 fI−{1,i} (a, c)

)
◦i (a ◦i b) ◦i

(
(a ◦i b) ◦1 fI−{1,i} (b, c)

)
=

(
a ◦i b ◦i a ◦1 fI−{1,i} (a, c)

)
◦i

(
a ◦i b ◦i b ◦1 fI−{1,i} (b, c)

)
= a ◦i

(
a ◦1 fI−{1,i} (a, c)

)
◦i b ◦i

(
b ◦1 fI−{1,i} (b, c)

)
= fI (a, c) ◦i fI (b, c) .

(2) From the weak distributivity and idempotence, we have

fI (a ◦i b, b) = f1,2,··· ,n−1 (a ◦i b, (a ◦i b) ◦n b)
= f1,2,··· ,i−1,i+1,··· ,n (a ◦i b, (a ◦i b) ◦i b)
= a ◦i b.

Interchange roles of a and b, fI (a ◦i b, a) = a ◦i b holds.
(3) First, we show that for any nonempty subsequence K = (i1, i2, · · · , ik) of
(1, 2, · · · , n),

fi1,i2,··· ,ik
(a, fi1,i2,··· ,ik

(b, c)) = a ◦i1

(
a ◦i2

(
· · ·

(
aik−1 (a ◦ik

b ◦ik
c)

)
· · ·

))
= fi1,i2,··· ,ik

(a, b ◦ik
c) .

We use the induction on k. If k = 2, then by (5), (2) of Lemma 2.3.,

fi1,i2 (a, fi1,i2 (b, c)) = a ◦i1 (a ◦i2 (b ◦i1 (b ◦i2 c)))
= a ◦i1 (a ◦i2 b) ◦i1 (a ◦i2 b ◦i2 c) = a ◦i1 (a ◦i2 b ◦i2 c)
= fi1,i2 (a, b ◦i2 c) .

Assume that the above statement is true for all sequences of indices with the length≤
k − 1. Let K = (i1, i2, · · · , ik) and J = (i1, i2, · · · , ik−1). Then by induction
hypothesis, (5) and (3) of Lemma 2.3, we have

fK (a, fK (b, c)) = fK (a, fJ (b, b ◦ik
c))

= a ◦ik
fJ (a, fJ (b, b ◦ik

c))
= a ◦ik

fJ

(
a, b ◦ik−1 (b ◦ik

c)
)

= fJ

(
a, a ◦ik

(
b ◦ik−1 (b ◦ik

c)
))

= fJ

(
a, (a ◦ik

b) ◦ik−1 (a ◦ik
b ◦ik

c)
)

= fJ (a, a ◦ik
b ◦ik

c)
= fK (a, b ◦ik

c) .
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Hence fK (a, fK (b, c)) = fK (a, b ◦ik
c) = fK (a, fK (c, b)). Also, we show that

fK (fK (a, b) , c) = a ◦i1

(
a ◦i2

(
· · ·

(
a ◦ik−1 (a ◦ik

b ◦ik
c)

)
· · ·

))
= fK(a, b◦ik

, c).

First, we claim that for index J = (i1, i2, · · · , in) (2 ≤ n ≤ k − 1)

fJ(fK(a, b), c) = a ◦i1 (a ◦i2 (· · · (a ◦in
fK−J(a, b) ◦in

c) · · · ))
= fJ (a, fK−J (a, b) ◦in

c) .

We use the induction on n. Let S = (i2, i3, · · · , ik) and T = (i3, · · · , ik). If n = 2,
then by (7), (5) and (3) of Lemma 2.3,

fi1,i2 (fK (a, b) , c) = fK (a, b) ◦i1 (fK (a, b) ◦i2 c)
= ◦i1fS (a, b) ◦i1 ((a ◦i1 fS (a, b)) ◦i2 c)
= a ◦i1 (a ◦i2 fT (a, b)) ◦i1 ((a ◦i1 (a ◦i2 fT (a, b))) ◦i2 c)
= a ◦i1 (a ◦i2 (fT (a, b) ◦i1 (fT (a, b) ◦i2 c)))
= a ◦i1 (a ◦i2 fT (a, b)) ◦i1 (a ◦i2 fT (a, b) ◦i2 c)
= a ◦i1 (a ◦i2 fT (a, b) ◦i2 c)
= a ◦i1

(
a ◦i2 fK−{i1,i2} (a, b) ◦i2 c

)
= fi1,i2

(
a, fK−{i1,i2} (a, b) ◦i2 c

)
.

Assume that

fJ (fK (a, b) , c) = a ◦i1 (a ◦i2 (· · · (a ◦in fK−J (a, b) ◦in c) · · · ))
= fJ (a, fK−J (a, b) ◦in c) .

holds for all n ≤ k − 2. Then by the induction hypothesis, (1) and (3) of Lemma
2.3, we have

fi1,··· ,ik−1 (fK (a, b) , c) = fi1,··· ,ik−2 (fK (a, b) , c) ◦ik−1 fK (a, b)
= fK (a, b) ◦ik−1 fi1,··· ,ik−2

(
a, fK−J (a, b) ◦ik−2 c

)
= a ◦ik−1 fi1,··· ,ik−2 (a, a ◦ik

b) ◦ik−1 fi1,··· ,ik−2

(
a, fK−J (a, b) ◦ik−2 c

)
= a ◦ik−1 fi1,··· ,ik−2

(
a, (a ◦ik

b) ◦ik−1

(
fK−J (a, b) ◦ik−2 c

))
= fi1,··· ,ik−2

(
a, a ◦ik−1 (a ◦ik

b) ◦ik−1

((
a ◦ik−1 (a ◦ik

b)
)
◦ik−2 c

))
= fi1,··· ,ik−2

(
a,

(
a ◦ik−1 (a ◦ik

b)
)
◦ik−2

(
a ◦ik−1 (a ◦ik

b) ◦ik−1 c
))

= fi1,··· ,ik−2

(
a, a ◦ik−1 (a ◦ik

b) ◦ik−1 c
)

= fi1,··· ,ik−1

(
a, fK−{i1,i2,··· ,ik−1} (a, b) ◦ik−1 c

)
.

Using the above claim, we have

fi1,i2,··· ,ik
(fK (a, b) , c) = fK (a, b ◦ik

c) .

This completes the proof. �
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3. wDn-SLatt and wDn-Latt

In this section, we prove that a weak distributive n-semilattice has a partition
consisting of weak distributive n-lattices and which form a direct system in the cate-
gory wDn-Latt of weak distributive n-lattices and homomorphisms. Furthermore,
we show that the direct limit of this direct system gives to the reflection. Firstly,
for a weak distributive n-semilattice W , we have a partition of weak distributive
n-lattices of W by the following equivalence relation.

Proposition 3.1. Let W = (W,F ) be a weak distributive n-semilattice. Define a
binary relation θ on W as follows:

(a, b) ∈ θ if and only if fI (a, b) = a and fI (b, a) = b,

where I = (1, 2, · · · , n). Then θ is an equivalence relation and each equivalence
class θ(x) of x is a subalgebra of W . Moreover, each θ(x) is a weak distributive
n-lattice.

Proof. Clearly, θ is reflexive and symmetric. Let (a, b) , (b, c) ∈ θ. Then

fI(a, b) = a, fI(b, a) = b = fI(b, c) and fI(c, b) = c.

Using (3) of Lemma 2.4, we have (a, c) ∈ θ ; θ is transitive. Then θ is an equiva-
lence relation. It remains to show that each θ(x) is a subalgebra which is a weak
distributive n-lattice. Take any a, b ∈ θ(x). Then

fI(a, x) = a, fI(x, a) = x = fI(x, b) and fI(b, x) = b.

Thus for any j ∈ [n],

fI(a ◦j b, x) = fI(a, x) ◦j fI(b, x) = a ◦j b,

fI(x, a ◦j b) = fI(x, a) ◦j fI(x, b) = x ◦j x = x;

a ◦j b ∈ θ(x). So θ(x) is a subalgebra of W . By the definition of θ and Lemma
2.4., θ(x) satisfies the generalized absorption law and thus each θ(x) is a weak
distributive n-lattice. �

Proposition 3.1 amounts to saying that for a weak distributive n-semilattice
W = (W,F ) we have a partition {Wα | α ∈ S} of subalgebras of W which are weak
distributive n-lattices. Here we consider a binary relation ≤ on the set S of indices
of the set {Wα | α ∈ S} defined as follows :

α ≤ β if and only if there are a ∈ Wα, b ∈ Wβ such that fI (b, a) = b.

Then (S,≤) is a join semilattice.

For α ≤ β let ϕα,β : Wα −→ Wβ be the map defined by ϕα,β (a) = fI (a, b),
where b is an arbitrary element of Wβ . Thus we have a family of homomorphisms
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{ϕα,β | α ≤ β}. Moreover, for α ≤ β and β ≤ γ, ϕα,β(a) = fI (a, b) and ϕβ,γ (b) =
fI (b, c), where b ∈ Wβ and c ∈ Wγ , and thus

ϕβ,γ ◦ ϕα,β(a) = ϕβ,γ (fI (a, b)) = fI (fI (a, b) , c)
= fI (a, fI (b, c)) = fI (a, fI (c, b))
= fI (a, c) = ϕα,γ (a)

and

ϕα,α (a) = fI (a, a) = a = 1Wα
(a) .

Then we obtain a direct system(see [4]) ((S,≤) , {Wα | α ∈ S}, {ϕα,β | α ≤ β}) of
weak distributive n-lattices, where {Wα | α ∈ S} is the partition of the given weak
distributive n-semilattice W , given by Proposition 3.1.
Let S (W ) =

(⋃
α∈S Wα, ∗1, ∗2, · · · , ∗n

)
be an algebra with n binary operations such

that for x ∈ Wα, y ∈ Wβ , x ∗i y = ϕα,γ(x) ◦i ϕβ,γ(y), where γ = α ∨ β in the join
semilattice (S,≤). Then one has the following Proposition :

Proposition 3.2. For any weak distributive n-semilattice W = (W, ◦1, ◦2, · · · , ◦n),
W and S (W ) are identical.

Proof. For any x, y ∈ W , assume that x ∈ Wα, y ∈ Wβ and let γ = α ∨ β, then
z = x ◦i y ∈ Wγ , by the above argument. Then x ∗i y = ϕα,γ(x) ◦i ϕβ,γ(y) =
fI(x, z) ◦i fI(y, z) = fI(x ◦i y, z) = fI(z, z) = z = x ◦i y for all i ∈ [n]. �

From the definition of homomorphism ϕα,β and Proposition 3.2, we have the
following theorem:

Theorem 3.3. For a weak distributive n-semilattice W = (W, ◦1, ◦2, · · · , ◦n), let
S (W ) =

(⋃
α∈S Wα, ∗1, ∗2, · · · , ∗n

)
= (W, ◦1, ◦2, · · · , ◦n) in the above Proposition

3.2. Define a binary relation Λ on S(W ) by (x, y) ∈ Λ if and only if x ∈ Wα,
y ∈ Wβ for some α, β ∈ S and there exists γ ∈ S such that α ≤ γ, β ≤ γ,
ϕα,γ(x) = ϕβ,γ(y), i.e., fI(x, z) = fI(y, z), where z is an arbitrary element of Wγ .
Then the relation Λ is a congruence on S (W ).

The following theorem follows from Theorem 3.3.

Theorem 3.4. The quotient algebra (S (W ) /Λ, ∗1, ∗2, · · · , ∗n) of S (W ) is a weak
distributive n-lattice.

Proof. It is enough to show that S (W ) /Λ satisfies the generalized absorption law.
Let x ∈ Wα and y ∈ Wβ for some α, β ∈ S, then there exists γ ∈ S such that
α, β ≤ γ. So

[x]Λ ∗1 ([x]Λ ∗2 (· · · ([x]Λ ∗n−1 ([x]Λ ∗n [y]Λ)) · · · ))
= [ϕα,γ (x) ◦1 (ϕα,γ (x) ◦2 (· · · (ϕα,γ (x) ◦n−1 (ϕα,γ (x) ◦n ϕβ,γ (y))) · · · ))]Λ
= [ϕα,γ(x)]Λ = [x]Λ.
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Hence S (W ) /Λ is a weak distributive n-lattice. �

As the following terminologies are refer to [4], we obtain the following facts:

Remark 3.5. For a weak distributive n-semilattice W = (W, ◦1, ◦2, · · · , ◦n), W
and S (W ) are identical. Thus, S (W ) /Λ may be viewed as a quotient algebra of
W . In fact, W/Λ is the direct limit of the direct system

((S,≤) , {Wα | α ∈ S}, {ϕα,β | α ≤ β}) .

The class of weak distributive n-semilattices and homomorphisms between them
forms a category, which will be denoted by wDn-SLatt, and the class of weak dis-
tributive n-lattices forms a full subcategory of wDn-SLatt, which will be denoted
by wDn-Latt.

Theorem 3.6. The category wDn-Latt is a reflective subcategory of the category
wDn-SLatt.

Proof. For a weak distributive n-semilattice W = (W, ◦1, ◦2, · · · , ◦n), let q :
W −→ W/Λ be the quotient homomorphism, where Λ is the congruence given
in Theorem 3.3. Then (q, W/Λ) is the wDn-Latt-reflection of W ∈ wDn-SLatt.
In fact, take any L = (L, ∗1, ∗2, · · · , ∗n) ∈ wDn-Latt and any homomorphism
f : W −→ L, then ker(q) ⊆ ker(f). For any (x, y) ∈ ker (q) , there are α, β ∈ S
such that x ∈ Wα, y ∈ Wβ . Then there is γ ∈ S such that α ≤ γ, β ≤ γ,
q(x) = [ϕα,γ (x)]Λ = [ϕβ,γ (y)]Λ = q (y) so, x ◦1 (x ◦2 (· · · (x ◦n−1 (x ◦n z)) · · · )) =
y ◦1 (y ◦2 (· · · (y ◦n−1 (y ◦n z)) · · · )), where z is an arbitrary element of Wγ . Since
f is a homomorphism and each element of L satisfies the generalized absorp-
tion law, f (x) = f (x) ∗1 (f (x) ∗2 (· · · (f (x) ∗n−1 (f (x) ∗n f (z))) · · · )) = f (y) ∗1

(f (y) ∗2 (· · · (f (y) ∗n−1 (f (y) ∗n f (z))) · · · )) = f (y) ; therefore (x, y) ∈ ker (f).
So by the Fundamental Theorem of Factorization, there is a unique homomorphism
f̄ : W/Λ −→ L with f̄ ◦ q = f . Hence wDn-Latt is a reflective subcategory of
wDn-SLatt. �

Corollary 3.7. The category wDn-Latt is closed under the formation of limits in
the category wDn-SLatt.

Note that W/Λ is the direct limit of the following direct system
((S,≤) , {Wα | α ∈ S}, {ϕα,β | α ≤ β}).

Then we have the following corollary, directly.

Corollary 3.8. If W = (W,F ) is a finite weak distributive n-semilattice, then
Wp

∼= W/Λ, where p is the largest element of (S,≤).
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