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Abstract. By a near λ-lattice is meant an upper λ-semilattice where is defined a partial

binary operation x∧y with respect to the induced order whenever x, y has a common lower

bound. Alternatively, a near λ-lattice can be described as an algebra with one ternary

operation satisfying nine simple conditions. Hence, the class of near λ-lattices is a quasi-

variety. A λ-semilattice A = (A;∨) is said to have sectional (antitone) involutions if for

each a ∈ A there exists an (antitone) involution on [a, 1], where 1 is the greatest element

of A. If this antitone involution is a complementation, A is called an ortho λ-semilattice.

We characterize these near λ-lattices by certain identities.

Nearlattices were studied (under different names) by several authors. Some es-
sential results are collected in [3] where is given also a characterization of nearlattices
as algebras with one ternary operation. The concept of a lattice was generalized
by V. Snášel [5] by dropping out associativity. The resulting algebra A = (A;∨,∧)
satisfying idempotency for ∨,∧, commutativity for ∨,∧, the absorption laws and
the so-called skew associativity

(SA) x ∨ ((x ∨ y) ∨ z) = (x ∨ y) ∨ z, x ∧ ((x ∧ y) ∧ z) = (x ∧ y) ∧ z

is called a λ-lattice. Applying this concept instead of a lattice in the definition of
nearlattice, we obtain a near λ-lattice. This is the subject of our next considera-
tions.

In the sequel, we equip these near λ-lattices with the so-called sectional in-
volutions to obtain structures analogous to ortholattices (see [2]). They can be
characterized by a new binary operation which is derived “as implication” similarly
as it was done by J. C. Abbott [1] for boolean near-lattices.

Definition 1. An upper λ-semilattice (or a commutative directoid in [4]) is
an algebra A = (A;∨) of type (2) satisfying the identities

(A1) x ∨ x = x (idempotency);

(A2) x ∨ y = y ∨ x (commutativity);
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(A3) x ∨ ((x ∨ y) ∨ z) = (x ∨ y) ∨ z (skew associativity ).

Lemma 1. Let (A;∨) be an upper λ-semilattice. If we define

x ≤ y if and only if x ∨ y = y,

then the relation ≤ is a partial order on A.

Proof. Clearly x ≤ x for each x ∈ A by (A1). Further, if x ≤ y and y ≤ x, then
y = x ∨ y = y ∨ x = x by (A2). Finally, if x ≤ y, y ≤ z, then, by (A3),

x ∨ z = x ∨ (y ∨ z) = x ∨ ((x ∨ y) ∨ z) = (x ∨ y) ∨ z = y ∨ z = z,

thus x ≤ z. �

Let (A;≤) be an ordered set. Denote by

U(a, b) = {x ∈ A; a ≤ x and b ≤ x} and

L(a, b) = {x ∈ A;x ≤ a and x ≤ b} for a, b ∈ A.

Definition 2. A partial binary operation ∧ on an upper λ-semilattice A = (A;∨)
will be called the associated operation, if the following properties hold for all
x, y, z ∈ A:

i) x ∧ y is defined if and only if L(x, y) 6= ∅ and

a) x ∧ y ∈ L(x, y);

b) x ≤ y implies x ∧ y = x;

ii) If x ∧ y is defined then y ∧ x and x ∨ (x ∧ y) are defined and

a) x ∧ y = y ∧ x;

b) x ∨ (x ∧ y) = x;

iii) If (x ∧ y) ∧ z is defined then x ∧ ((x ∧ y) ∧ z) is defined and
x ∧ ((x ∧ y) ∧ z) = (x ∧ y) ∧ z.

Remark 1. It is clear from the definition that the associated operation ∧ is idem-
potent, i.e., for each x ∈ A, x ∧ x exists and x ∧ x = x. Further, the associated
operation ∧ satisfies the identity x ∧ (x ∨ y) = x, since x ≤ x ∨ y.

Definition 3. An upper λ-semilattice A = (A;∨) is called a near λ-lattice, if
there is defined the associated operation ∧ on A.

Remark 2. If A = (A;∨) is a near λ-lattice then it does not mean that for each
a ∈ A the interval [a) is a λ-lattice, see e.g. the following example:

Example 1. Consider the ordered set ({a, b, c, d, 1},≤) as shown in Fig. 1. If
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we define a ∨ b = c, c ∨ d = 1 and trivially for comparable elements then
A = ({a, b, c, d, 1},∨) is an upper λ-semilattice. To convert it into a near λ-lattice,
we have two choices for non-comparable elements, namely c ∧ d = a or c ∧ d = b.
Let e.g. c ∧ d = b and x ∧ y = x whenever x ≤ y. Then A is a near λ-lattice but
the interval [a, 1] = {a, c, d, 1} is not a λ-lattice because c ∧ d is not defined in it.
On the contrary [b, 1] is a λ-lattice as one can easily verify.
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Now, we show that near λ-lattices can be considered equivalently as algebras
with one ternary operation.

Theorem 1. Let M = (M ;∨) be a near λ-lattice and ∧ its associated operation.
Define a ternary operation w(x, y, z) = (x∨ z)∧ (y∨ z) on M. Then w(x, y, z) is an
everywhere defined operation and the following conditions are satisfied :

(C) for every p, q ∈ L(x, y), w(x, y, p) = w(x, y, q);

(P1) w(x, y, x) = x;

(P2) w(x, x, y) = w(y, y, x);

(P3) w(x, x, w(w(x, x, y), w(x, x, y), z)) = w(w(x, x, y), w(x, x, y), z);

(P4) w(x, y, z) = w(y, x, z);

(P5) w(x,w(w(x, y, z), v, z), z) = w(w(x, y, z), v, z);

(P6) w(x,w(y, y, x), z) = w(x, x, z);

(P7) w(w(x, x, z), w(x, x, z), w(y, x, z)) = w(x, x, z);

(P8) w(w(x, x, z), w(y, y, z), z) = w(x, y, z).

Proof. Clearly z ≤ x ∨ z, z ≤ y ∨ z, hence L(x ∨ z, y ∨ z) 6= ∅, thus (x ∨ z) ∧ (y ∨ z)
is an everywhere defined operation on M. To prove the condition (C) we suppose
p, q ∈ L(x, y). Then L(x, y) 6= ∅ and hence x ∧ y is defined. This yields

w(x, y, p) = (x ∨ p) ∧ (y ∨ p) = x ∧ y = (x ∨ q) ∧ (y ∨ q) = w(x, y, q).

Prove the identities (P1)–(P8) :

(P1) w(x, y, x) = (x ∨ x) ∧ (y ∨ x) = x ∧ (y ∨ x) = x;
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(P2)

w(x, x, y) = (x ∨ y) ∧ (x ∨ y) = x ∨ y

= y ∨ x = (y ∨ x) ∧ (y ∨ x)
= w(y, y, x);

(P3)

w(x, x, w(w(x, x, y), w(x, x, y), z)) = x ∨ w(w(x, x, y), w(x, x, y), z)
= x ∨ (w(x, x, y) ∨ z)
= x ∨ ((x ∨ y) ∨ z)
= (x ∨ y) ∨ z

= w(x, x, y) ∨ z

= w(w(x, x, y), w(x, x, y), z);

(P4) w(x, y, z) = (x ∨ z) ∧ (y ∨ z) = (y ∨ z) ∧ (x ∨ z) = w(y, x, z);

(P5)

w(x, w(w(x, y, z), v, z), z) = (x ∨ z) ∧ (w(w(x, y, z), v, z) ∨ z)
= (x ∨ z) ∧ (((w(x, y, z) ∨ z) ∧ (v ∨ z)) ∨ z)
= (x ∨ z) ∧ ((w(x, y, z) ∨ z) ∧ (v ∨ z))
= (x ∨ z) ∧ ((((x ∨ z) ∧ (y ∨ z)) ∨ z) ∧ (v ∨ z))
= (x ∨ z) ∧ (((x ∨ z) ∧ (y ∨ z)) ∧ (v ∨ z))
= ((x ∨ z) ∧ (y ∨ z)) ∧ (v ∨ z)
= (((x ∨ z) ∧ (y ∨ z)) ∨ z) ∧ (v ∨ z)
= w((x ∨ z) ∧ (y ∨ z), v, z)
= w(w(x, y, z), v, z);

(P6)

w(x, w(y, y, x), z) = w(x, y ∨ x, z) = (x ∨ z) ∧ ((y ∨ x) ∨ z)
= (x ∨ z) ∧ (y ∨ (x ∨ z)) = x ∨ z

= w(x, x, z);

(P7)

w(w(x, x, z), w(x, x, z), w(y, x, z)) = w(x ∨ z, x ∨ z, w(y, x, z))
= (x ∨ z) ∨ w(y, x, z)
= (x ∨ z) ∨ ((y ∨ z) ∧ (x ∨ z))
= x ∨ z = w(x, x, z);
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(P8)

w(w(x, x, z), w(y, y, z), z) = w(x ∨ z, y ∨ z, z)
= ((x ∨ z) ∨ z) ∧ ((y ∨ z) ∨ z)
= (x ∨ z) ∧ (y ∨ z)
= w(x, y, z).

�
We are going to prove the converse. For this, let us state the following

Lemma 2. Let M = (M ;w) be an algebra of type (3) satisfying the identities (P1),
(P2), and (P3). Define x∨ y = w(x, x, y). Then (M ;∨) is an upper λ-semilattice.

Proof. Idempotency: by (P1), we have x ∨ x = w(x, x, x) = x.
Commutativity : by (P2), x ∨ y = w(x, x, y) = w(y, y, x) = y ∨ x.
Skew associativity : applying (P3), we infer

x ∨ ((x ∨ y) ∨ z) = w(x, x, (x ∨ y) ∨ z)
= w(x, x, w(x ∨ y, x ∨ y, z))
= w(x, x, w(w(x, x, y), w(x, x, y), z))
= w(w(x, x, y), w(x, x, y), z)
= w(x ∨ y, x ∨ y, z) = (x ∨ y) ∨ z.

�

Due to Lemma 2, we can introduce an order ≤ on an algebra M = (M ;w) as
follows :

x ≤ y if and only if w(x, x, y) = y.

This order will be called the induced order of M.

Theorem 2. Let M = (M ;w) be an algebra of type (3) satisfying (C), (P1) – (P7),
and let ≤ be the induced order. Then for x ∨ y = w(x, x, y), (M ;∨) is an upper
λ-semilattice. For x, y, p ∈ M, such that p ≤ x, y we define

x ∧ y = w(x, y, p).

Then (M ;∨) is a near λ-lattice where ∧ is the associated operation.
If M = (M ;w) satisfies moreover (P8), then the correspondence between near

λ-lattices and algebras (M ;w) satisfying (C), (P1) – (P8) is one-to-one.

Proof. By Lemma 2, (M ;∨) is an upper λ-semilattice. Further, for each x ∈ M we
have x ∈ L(x, x) and hence

x ∧ x = w(x, x, x) = x ∨ x = x.

Suppose now L(x, y) 6= ∅, i.e., there exists p ∈ L(x, y). By (P4) we get

x ∧ y = w(x, y, p) = w(y, x, p) = y ∧ x.
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Since (x ∧ y) ∧ z is defined, we have L(L(x, y), z) 6= ∅, and thus exist p, q such that
p ∈ L(x, y) and q ∈ L(L(x, y), z). Hence also q ∈ L(x, y), by (C), w(x, y, p) =
w(x, y, q), and by (P5)

x ∧ ((x ∧ y) ∧ z) = x ∧ (w(x, y, p) ∧ z) = x ∧ (w(w(x, y, p), z, q))
= w(x,w(w(x, y, p), z, q), q) = w(w(x, y, q), z, q)
= (w(x, y, q) ∨ q) ∧ (z ∨ q)
= (((x ∨ q) ∧ (y ∨ q)) ∨ q) ∧ (z ∨ q)
= ((x ∨ q) ∧ (y ∨ q)) ∧ (z ∨ q)
= (x ∧ y) ∧ z.

It remains to show the absorption laws. Since x ≤ y ∨ x, we have x ∈ L(x, y ∨ x)
and hence x ∧ (y ∨ x) is defined and, by (P6), we have

x ∧ (y ∨ x) = x ∧ w(y, y, x) = w(x, w(y, y, x), x)
= w(x, x, x) = x.

To prove the second absorption law, suppose L(x, y) 6= ∅ and p ∈ L(x, y). Then
y ∧ x is defined, and applying (P7),

x ∨ (y ∧ x) = x ∨ w(y, x, p) = (x ∨ p) ∨ w(y, x, p)
= w(x, x, p) ∨ w(y, x, p)
= w(w(x, x, p), w(x, x, p), w(y, x, p))
= w(x, x, p) = x ∧ x = x.

Hence, (M,∨) is a near λ-lattice.
If (M ;w) is an algebra of type (3) satisfying (C), (P1) – (P8), x∨y := w(x, x, y)

for all x, y ∈ M and x∧ y := w(x, y, p) for all p ∈ M and all x, y ∈ M with x, y ≥ p
then (x ∨ z) ∧ (y ∨ z) = w(w(x, x, z), w(y, y, z), z) = w(x, y, z) for all x, y, z ∈ M .

Thus the correspondence between near λ-lattices and induced algebras M =
(M ;w) is one-to-one. �

Example 2. Let M = (M ;∨) be a near λ-lattice depicted in Fig. 2, such that
x∧y = p2, p1∧p2 = p3, p1∨p2 = x and p3∨p4 = p2. Then L(x, y) = {p1, p2, p3, p4}
and, by condition (C) from Theorem 1, we have :

w(x, y, pi) = w(x, y, pj) for all i, j ∈ {1, 2, 3, 4}.

Note that p3 ∧ p4 is not defined, because L(p3, p4) = ∅.
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Remark 3. Because of Theorems 1 and 2, near λ-lattices can be alternatively
considered as algebras M = (M ;w) of type (3) satisfying (C), (P1) – (P8) and ≤
will be referred to as the induced order of M = (M ;w).

Since (P1) – (P8) are identities and (C) is a quasi-identity, we have

Corollary. The class of all near λ-lattices (considered as ternary algebras) is a
quasivariety N .

For varieties which are subquasivarieties of N , we can prove

Theorem 3. Every variety of near λ-lattices is congruence distributive.

Proof. Take n = 4, and t0(x, y, z) = x, t4(x, y, z) = z and t1(x, y, z) = w(z, y, x),
t2(x, y, z) = w(x, x, z), t3(x, y, z) = w(x, y, z).

Then t0(x, y, x) = x
t1(x, y, x) = w(x, y, x) = x
t2(x, y, x) = w(x, x, x) = x
t3(x, y, x) = w(x, y, x) = x
t4(x, y, x) = x

i even: t0(x, x, y) = x = w(x, y, x) = w(y, x, x) = t1(x, x, y)
t2(x, x, y) = w(x, x, y) = t3(x, x, y)

i odd: t1(x, y, y) = w(y, y, x) = w(x, x, y) = t2(x, y, y)
t3(x, y, y) = w(x, y, y) = w(y, x, y) = y = t4(x, y, y).

Then t0, · · · , t4 are Jónsson’s terms and hence the variety is congruence dis-
tributive. �

Near λ-lattices with sectional antitone involutions

Let A = (A;∨) be a λ-semilattice with a greatest element 1. We say that A is
with sectional involutions if for each a ∈ A there is a mapping fa of [a, 1] into
itself such that fa(fa(x)) = x for each x ∈ [a, 1] and fa(a) = 1, fa(1) = a. We say
that A is with sectional antitone involutions if for each a ∈ A, the mapping fa

is antitone, i.e. if x, y ∈ [a, 1] with x ≤ y then fa(y) ≤ fa(x).
For the sake of brevity, we will denote fa(x) = xa.
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Example 3. Consider the near λ-lattice A from Fig. 1. Define e.g.

ca = c, da = d, aa = 1, 1a = a, cb = d, db = c, bb = 1, 1b = b

and trivially for 2-element intervals. One can easily check that A is a near λ-lattice
with sectional antitone involutions.

Let A = (A;∨) be a near λ-lattice with sectional involutions. Introduce new
binary operation ◦ on A as follows :

x ◦ y = (x ∨ y)y.

Since x ∨ y ∈ [y, 1], ◦ is everywhere defined operation on A.

Lemma 3. Let A = (A;∨) be a near λ-lattice with sectional involutions. Then
x ◦ y = 1 if and only if x ≤ y.

Proof. If x ≤ y then x ◦ y = (x∨ y)y = yy = 1. Conversely, suppose x ◦ y = 1. Then
(x∨ y)y = 1. Since the involution is a bijection with yy = 1, we conclude x∨ y = y
thus also x ≤ y. �

Theorem 4. Let A = (A;∨) be a near λ-lattice with sectional involutions. Then
the operation ◦ satisfies the following identities:

(I1) x ◦ 1 = 1, 1 ◦ x = x, x ◦ x = 1;

(I2) (x ◦ y) ◦ y = (y ◦ x) ◦ x;

(I3) ((x ◦ y) ◦ y) ◦ y = x ◦ y;

(I4) x ◦ ((((x ◦ y) ◦ y) ◦ z) ◦ z) = 1;

(I5) x ◦ (y ◦ x) = 1.

In this case we have x ∨ y = (x ◦ y) ◦ y.
If, moreover, the sectional involutions are antitone then ◦ satisfies also

(I6) (((((x ◦ y) ◦ y) ◦ z) ◦ z) ◦ x) ◦ (y ◦ x) = 1.

Proof.

(I1) :

x ◦ 1 = (x ∨ 1)1 = 11 = 1;
1 ◦ x = (1 ∨ x)x = 1x = x;
x ◦ x = (x ∨ x)x = xx = 1.

(I2) : (x ◦ y) ◦ y = ((x∨ y)y ∨ y)y = (x∨ y)yy = x∨ y thus also (y ◦ x) ◦ x = y ∨ x =
x ∨ y = (x ◦ y) ◦ y.
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(I3) : By the previous we have

((x ◦ y) ◦ y) ◦ y = (x ∨ y) ◦ y = ((x ∨ y) ∨ y)y = (x ∨ y)y = x ◦ y.

(I4) : Since A is a near λ-lattice, it satisfies the identity (A3) whence x ≤ (x∨y)∨z.
Applying the previous result x∨y = (x◦y)◦y, we obtain x ≤ (((x◦y)◦y)◦z)◦z.
Due to Lemma 3 we get (I4).

(I5) : x ◦ (y ◦ x) = (x ∨ (y ∨ x)x)(y∨x)x

= ((y ∨ x)x)(y∨x)x

= 1.
Suppose now that the sectional involutions are antitone. Evidently x ≤ y ∨
x, x ∨ y ≤ (x ∨ y) ∨ z and x ≤ x ∨ ((x ∨ y) ∨ z) = (x ∨ y) ∨ z thus

((((x ◦ y) ◦ y) ◦ z) ◦ z) ◦ x = ((x ∨ y) ∨ z) ◦ x = (((x ∨ y) ∨ z) ∨ x)x

= (x ∨ ((x ∨ y) ∨ z))x = ((x ∨ y) ∨ z)x ≤ (x ∨ y)x

= (y ∨ x)x = y ◦ x.

By Lemma 3 we obtain (I6). �

Remark 4. The third simple identity in (I1), namely x ◦ x = 1, can be derived by
the other two remaining and (I2) as follows

x ◦ x = (1 ◦ x) ◦ x = (x ◦ 1) ◦ 1 = 1.

We are wonder if our operation ◦ determines also the near λ-lattice with sectional
involutions. We can state

Theorem 5. Let A = (A; ◦, 1) be an algebra of type (2, 0) satisfying the identities
(I1) - (I5). Define

x ≤ y if and only if x ◦ y = 1.

Then (A;≤) is an ordered set with the greatest element 1 which is an upper λ-
semilattice for

x ∨ y = (x ◦ y) ◦ y.

The involution on each [a, 1] is defined by xa = x ◦ a for x ∈ [a, 1].
If A satisfies, moreover, (I6) then for each p ∈ A the involution on [p, 1] is antitone
and ([p, 1];≤) is a λ-lattice whose operations are ∨ and ∧p defined by x ∧p y =
(xp ∨ yp)p.

Proof. By (I1), the relation ≤ is reflexive and x ≤ 1 for each x ∈ A. If x ≤ y
and y ≤ x then, by (I2), x = 1 ◦ x = (y ◦ x) ◦ x = (x ◦ y) ◦ y = ◦y = y thus ≤ is
antisymmetrical. Suppose x ≤ y and y ≤ z. Then, applying (I1) and (I4) we have

x ◦ z = x ◦ (1 ◦ z) = x ◦ ((y ◦ z) ◦ z)
= x ◦ (((1 ◦ y) ◦ z) ◦ z)
= x ◦ ((((x ◦ y) ◦ y) ◦ z) ◦ z) = 1
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whence x ≤ z. Thus ≤ is transitive and hence an order on A.
Put x ∨ y = (x ◦ y) ◦ y. By (I5) and (I2) we have x ≤ (y ◦ x) ◦ x = (x ◦ y) ◦ y and,
by (I5), y ≤ (x ◦ y) ◦ y thus (x ◦ y) ◦ y ∈ U(x, y). If x ≤ y then x ◦ y = 1 thus
(x ◦ y) ◦ y = 1 ◦ y = y.
Hence, (A;∨) is an upper λ-semilattice with the greatest element 1.

Let x ∈ [a, 1] and define xa = x ◦ a. Then xaa = (x ◦ a) ◦ a = x ∨ a = x,
aa = a ◦ a = 1 and 1a = 1 ◦ a = a thus it is an involution on [a, 1] for each a ∈ A.
Suppose that A = (A; ◦, 1) satisfies also (I6). Then for x, y, z ∈ A, x ≤ y ≤ z (i.e.,
y, z ∈ [x, 1]) we have by (I6) ((x∨y)∨z)◦x ≤ y◦x, i.e., zx = z◦x = ((x∨y)∨z)◦x ≤
y ◦ x = yx, i.e., every involution on each [x, 1] is antitone. In this case, define for
a, b ∈ [p, 1]

a ∧p b = (ap ∨ bp)p.

Since ap, bp ≤ ap ∨ bp, we have

a = app ≥ (ap ∨ bp)p = a ∧p b

b = bpp ≥ (ap ∨ bp)p = a ∧p b

thus a ∧p b ∈ L(a, b). If a ≤ b then ap ≥ bp thus a ∧p b = (ap ∨ bp)p = app = a, i.e.,
∧p satisfies (i) of Definition 2. Of course, x∧p y = y∧p x. Since x∧p y ≤ x, we have
x ∨ (y ∧p x) = x thus also (ii) of Definition 2 is satisfied; (iii) is clear. Hence, ∧p is
the associated operation and ([p, 1];∨,∧p) is a λ-lattice. �

Example 4. The structure derived from A = (A; ◦, 1) as shown in Theorem 5
need not be a near λ-lattice. Consider the near λ-lattice from Example 2. Then
we have c ∧a d = (ca ∨ da)a = (c ∨ d)a = 1a = a in [a, 1] but in [b, 1] we have
c∧b d = (cb ∨ db)b = (d∨ c)b = 1b = b 6= a. Hence, ∧p cannot serve as an associated
operation of (A;∨).

On the contrary, if A is a near λ-lattice, we can prove :

Theorem 6. Let A = (A;∨) be a near λ-lattice with sectional antitone involutions
and ∧ be its associated operation. If for b ∈ A the section ([b, 1],∨,∧) is a λ-lattice
then

x ∧ y = (((x ◦ b) ◦ (y ◦ b)) ◦ (y ◦ b)) ◦ b

for all x, y ∈ [b, 1].

Proof. Since the section [b, 1] is a λ-lattice, x ∧ y is uniquely determined for each
x, y ∈ [b, 1]. By Theorem 5 (in the section [b, 1]), we have x ∧ y = (xb ∨ yb)b.
Moreover, also by Theorem 5, for each x, y ∈ [b, 1] it holds:

(xb ∨ yb)b = (xb ∨ yb) ◦ b = ((x ◦ b) ∨ (y ◦ b)) ◦ b

= (((x ◦ b) ◦ (y ◦ b)) ◦ (y ◦ b)) ◦ b.

�
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Ortho λ-semilattices

By an ortholattice is meant an algebra L = (L;∨,∧,⊥ , 0, 1) where (L;∨,∧, 0, 1)
is a bounded lattice, x⊥⊥ = x, x ≤ y ⇒ y⊥ ≤ x⊥ and x ∧ x⊥ = 0 (which is equiva-
lent to x ∨ x⊥ = 1).
Hence, it is a complemented lattice where the operation ⊥ of complementation is
an antitone involution on L. We can generalize this concept as follows:

Definition 4. By an ortho λ-lattice is meant an algebra L = (L;∨,∧,⊥ , 0, 1)
such that (L;∨,∧, 0, 1) is a bounded λ-lattice and x 7→ x⊥ is an antitone involution
satisfying x ∨ x⊥ = 1, x ∧ x⊥ = 0.
By an ortho λ-semilattice is meant a λ-semilattice with sectional antitone invo-
lutions (A;∨) where all sections are ortho λ-lattices, i.e., for each p ∈ A ([p, 1];≤) is
an ortho λ-lattice, such that xp is the orthocomplement of x ∈ [p, 1] in this section.

Example 5. The following λ-lattice is an ortho λ-lattice and ortho λ-semilattice
as well.

t
t

t
t

t

t
t
t

t
t

a

d⊥

b

c⊥

c

b⊥

d

a⊥

0

1 = 0⊥

Fig. 3
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The orthocomplementation in intervals [x, 1] for x 6= 0 is determined uniquelly and
for x = 0 it is pointed in the diagram.

Theorem 7. Let A = (A;∨) be a λ-semilattice with sectional antitone involutions.
Then A is an ortho λ-semilattice if and only if the derived operation x◦y = (x∨y)y

satisfies the identity

(((x ◦ y) ◦ y) ◦ (x ◦ y)) ◦ (x ◦ y) = 1. (∗)

Proof. Obviously,

(((x ◦ y) ◦ y) ◦ (x ◦ y)) ◦ (x ◦ y) = ((x ◦ y) ◦ y) ∨ (x ◦ y)
= ((x ◦ y) ◦ y) ∨ (((x ◦ y) ◦ y) ◦ y)
= (x ∨ y) ∨ (x ∨ y)y,
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hence the identity (∗) can be rewritten as

(x ∨ y) ∨ (x ∨ y)y = 1.

Trivially, x∨ y ∈ [y, 1] thus it is clear that in this case a∨ ay = 1 for each a ∈ [y, 1].
Since y ∈ L(a, ay), we have for the operation ∧y

a ∧y ay = (ay ∨ ayy)y = (ay ∨ a)y = 1y = y

thus ay is an orthocomplement of a in [y, 1].
Conversely, if A is an ortho λ-semilattice and x, y ∈ A then x∨ y ∈ [y, 1] and hence

(x ∨ y) ∨ (x ∨ y)y = 1

whence the identity is evident. �
Due to Theorem 7, the class O of ortho λ-semilattices (considered in the signa-

ture (◦, 1)) forms a variety.

Theorem 8. The variety O of ortho λ-semilattices is weakly regular.
Proof. Let t1(x, y) = x ◦ y and t2(x, y) = y ◦ x. Then t1(x, x) = t2(x, x) = x ◦ x = 1
and conversely, if t1(x, y) = t2(x, y) = 1 then x◦y = 1 = y ◦x thus x ≤ y and y ≤ x
whence x = y. Hence, t1, t2 are Csákány’s terms for weak regularity and hence O
is weakly regular. �
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