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ABSTRACT. By a near A-lattice is meant an upper A-semilattice where is defined a partial
binary operation z Ay with respect to the induced order whenever z, y has a common lower
bound. Alternatively, a near A-lattice can be described as an algebra with one ternary
operation satisfying nine simple conditions. Hence, the class of near \-lattices is a quasi-
variety. A A-semilattice A = (A4;V) is said to have sectional (antitone) involutions if for
each a € A there exists an (antitone) involution on [a, 1], where 1 is the greatest element
of A. If this antitone involution is a complementation, A is called an ortho A-semilattice.
We characterize these near A-lattices by certain identities.

Nearlattices were studied (under different names) by several authors. Some es-
sential results are collected in [3] where is given also a characterization of nearlattices
as algebras with one ternary operation. The concept of a lattice was generalized
by V. Snésel [5] by dropping out associativity. The resulting algebra A = (4;V, A)
satisfying idempotency for V, A, commutativity for V, A, the absorption laws and
the so-called skew associativity

(SA) xV((xzVy)Vz)=(@Vy Vz, aA((zAy)Az)=(xAy)Az

is called a A-lattice. Applying this concept instead of a lattice in the definition of
nearlattice, we obtain a near A-lattice. This is the subject of our next considera-
tions.

In the sequel, we equip these near A-lattices with the so-called sectional in-
volutions to obtain structures analogous to ortholattices (see [2]). They can be
characterized by a new binary operation which is derived “as implication” similarly
as it was done by J. C. Abbott [1] for boolean near-lattices.

Definition 1. An upper A-semilattice (or a commutative directoid in [4]) is
an algebra A = (4;V) of type (2) satisfying the identities

(Al) zVx==x (idempotency);
(A2) zVy=yVaz (commutativity);
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(A3) zV((zVy)Vz)=(zVy) Vz (skew associativity ).

Lemma 1. Let (A4;V) be an upper A-semilattice. If we define
<y ifandonlyif xVy=uy,

then the relation < is a partial order on A.

Proof. Clearly x < x for each x € A by (Al). Further, if z < y and y < z, then
y=aVy=yVaz=azby (A2). Finally, if x <y, y < z, then, by (A3),

xVz=aV(@yVz)=zV((zVy)Vz)=(xVy Vz=yVz=z,

thus z < z. O
Let (A; <) be an ordered set. Denote by

U(a,b) ={r € A;a<xzand b <z} and

L(a,b) ={z € A;z < a and z < b} for a,b € A.
Definition 2. A partial binary operation A on an upper A-semilattice A = (4;V)

will be called the associated operation, if the following properties hold for all
x,y,z € A:

i) z Ay is defined if and only if L(x,y) # 0 and

a) Ay € L(x,y);
b) x <y implies x Ay = z;

il) If z Ay is defined then y Az and z V (z A y) are defined and
a) xAy=yAuw;
b) zV (xAy)=x;

iii) If (z A y) A z is defined then z A ((x A y) A z) is defined and

e A((zAy)Az)=(zAy) Az

Remark 1. It is clear from the definition that the associated operation A is idem-
potent, i.e., for each x € A, x A x exists and x A x = z. Further, the associated
operation A satisfies the identity z A (z V y) = z, since x < z V y.

Definition 3. An upper A-semilattice A = (A;V) is called a near A-lattice, if
there is defined the associated operation A on A.

Remark 2. If A = (A4;V) is a near A-lattice then it does not mean that for each
a € A the interval [a) is a A-lattice, see e.g. the following example:

Example 1. Consider the ordered set ({a,b,c,d,1},<) as shown in Fig. 1. If
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we define a Vb = ¢, cVd = 1 and trivially for comparable elements then
A= ({a,b,¢c,d,1},V) is an upper A-semilattice. To convert it into a near A-lattice,
we have two choices for non-comparable elements, namely c Ad = a or ¢ Ad = b.
Let e.g. ¢cAd="band x Ay =z whenever x < y. Then A is a near A-lattice but
the interval [a, 1] = {a,c,d, 1} is not a A-lattice because ¢ A d is not defined in it.
On the contrary [b, 1] is a A-lattice as one can easily verify.

1

a b=cAd

Fig. 1

Now, we show that near A-lattices can be considered equivalently as algebras
with one ternary operation.

Theorem 1. Let M = (M;V) be a near \-lattice and A its associated operation.
Define a ternary operation w(x,y,z) = (xVz)A(yV z) on M. Then w(x,y, z) is an
everywhere defined operation and the following conditions are satisfied :

(C) for every p,q € L(z,y), w(z,y,p) =w(z,y,q);

Pl) w(z,y,z) = z;

P8

(P1)

(P2) w(z,z,y) = w(y,y,v);

(P3) w(z, z,w(w(z,z,y),w(x, z,y),2)) = ww(z,z,y), w(z,,y), 2);
(P4) w(z,y,2) = wly, v, 2);

(P5) w(z, w(w(z,y,2),v,2),2) = w(w(z,y,2),v,2);

(P6) w(z, w(y,y,x),2) = w(x,,2);

(P7) w(w(z,x,2),w(x, x,2),w(y,z, z2)) =w(x,x,2);

(P8) w(

w(w(z, z, 2),w(y,y, 2), 2) = w(zr,y, 2).

Proof. Clearly 2 <z Vz,2<yVz hence L(zV z,yV z) # 0, thus (x V2) A (y V 2)
is an everywhere defined operation on M. To prove the condition (C) we suppose
p,q € L(z,y). Then L(z,y) # 0 and hence = A y is defined. This yields

w(z,y,p) = (xVp)A(yVp) =z Ay = (Ve A(yVae =w(y,q).
Prove the identities (P1)—(P8) :
(P1) w(z,y,z) =(xVa)AN(yVz)=xA(yVz) =ux;
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w(z, x,y)

w(z, z, w(w(z, z,y),

(xV2z)A

w(:’r7 x? y)?

(yVvz)=

w(z,w(w(x,y,2),v,2),2) =

w(w(x’ x’ Z)7 w('r’ x? Z)?

w(y,,2))

(zVy)=zVy
=(yVa)A(yVaz)
(yyx)

(w\/y)

z))

zVw(w(z,z,y),w(z,z,y),
zV (w(z,x,y)V 2)
zV((zVy)Vz)
(xVy)Vz

w(z,x,y) V

w(w(x’ .'L', y)7 w('r’ x’ y)? Z);

(yV2)A(zVz2)=w(yz,z2);

(zV2) A (ww(z,y, 2),v,2) V 2)

(xV2)A ((w(z,y,2) V2)A(vV2))V2)
(xV2)A(w(x,y,2) Vz)A(vV2))
(V)N ((zV2)AN(yV2)Vz)A(vV2))
(@V2)A(((zV2)A(yV2) AV z))
((xvz)A(yVz)A@Vz)
(((xVv2)A(yV2) AV z)

w(z,yVe,z)=(@V2)A(yVe)Vz)
(xV2))AyV(zVz)=aVz

w(z, z, 2);

w(zVz,zV z,w(y,x,2))
(xV2)Vuw(y,z,z)
(xVvz)V(lyVz)A

xVz=uw(z,z,z2);

(zV2))

2)
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ww(x,z, 2),w(y,y,2),2) = wxVz,yVzz2)
((xvz)Vz)A((yVz)V2)
= (zV2)A(yV=2)

= w(z,y,2).

d
We are going to prove the converse. For this, let us state the following

Lemma 2. Let M = (M;w) be an algebra of type (3) satisfying the identities (P1),
(P2), and (P3). Define xVy = w(z,z,y). Then (M;V) is an upper A-semilattice.
Proof. Idempotency: by (P1), we have z V z = w(z,z,2) = .

Commutativity : by (P2), 2 Vy = w(z,z,y) = w(y,y,x) =y V .

Skew associativity : applying (P3), we infer

zV((xVy) Vz) = wz (zVy)Vz)

(z,
= w(wzw(e Vg,V y,2)
= w(z,z,w(w(,z,y),wz,y),z2))
= ww(z,z,y),w(x, x,y),2)
= w@VyrVyz)=(@VyVz
O

Due to Lemma 2, we can introduce an order < on an algebra M = (M;w) as

follows :
x <y ifand only if w(z,z,y)=y.

This order will be called the induced order of M.

Theorem 2. Let M = (M;w) be an algebra of type (3) satisfying (C), (P1) — (P7),
and let < be the induced order. Then for x Vy = w(x,z,y), (M;V) is an upper
A-semilattice. For x,y,p € M, such that p < x,y we define

T Ay =w(x,y,p).

Then (M;V) is a near A-lattice where A is the associated operation.
If M = (M;w) satisfies moreover (P8), then the correspondence between near
A-lattices and algebras (M;w) satisfying (C), (P1) — (P8) is one-to-one.

Proof. By Lemma 2, (M;V) is an upper A-semilattice. Further, for each z € M we
have x € L(z,z) and hence

Az =w(z,z,z)=axVr=uz
Suppose now L(z,y) # 0, i.e., there exists p € L(z,y). By (P4) we get

r ANy =w(r,yp) =wly,z,p) =y
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Since (z Ay) A z is defined, we have L(L(z,y),2) # 0, and thus exist p, ¢ such that
p € L(z,y) and ¢ € L(L(,y),2). Hence also ¢ € L(x,y), by (C), w(z,y,p) =
w(z,y,q), and by (P5)

rA((xAYy)ANz) = zA(w(z,y,p)Az)=xA(ww(,yp),z,q)
= w(z,w(w(z,y,p),2,q),q) =ww,y,q),2q)
(w(z,y,9) Vg) A(zVq)
= (evgAyVva) Ve A(zVa)
(Vg A(yVa)A(zVa)
(x Ay) A z.

It remains to show the absorption laws. Since z < y V z, we have x € L(z,y V x)
and hence x A (y V ) is defined and, by (P6), we have

ANyve) = zAw(yyz)=w wlyy z) )
= w(z,z,x) ==

To prove the second absorption law, suppose L(z,y) # 0 and p € L(z,y). Then
y A x is defined, and applying (P7),

V(yrz) = zVuw(y,z,p)=(zVp)Vw(yzDp)
w(z,z,p) Vw(y,z,p)

w(w(z,z,p), w(z,z,p), w(y,z,p))
= w(z,z,p) =z Az =2

Hence, (M, V) is a near \-lattice.
If (M;w) is an algebra of type (3) satistfying (C), (P1) — (P8), xVy := w(x, z,y)
for all z,y € M and x Ay := w(x,y,p) for all p € M and all z,y € M with x,y > p
then (x V2) A (yV 2) = w(w(x, z, 2),w(y,y, 2), z) = w(z,y, z) for all z,y,z € M.
Thus the correspondence between near A-lattices and induced algebras M =
(M;w) is one-to-one. O
Example 2. Let M = (M;V) be a near A-lattice depicted in Fig. 2, such that

TAY = p2, p1Ap2 = p3, p1Vp2 = & and p3Vps = p2. Then L(z,y) = {p1,p2, p3,pa}
and, by condition (C) from Theorem 1, we have :

w(x,yvpz) = w(xayvpj) for all Zvj € {17233a4}

Note that p3 A py is not defined, because L(ps,ps) = 0.
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1
T Y
p1 b2
b3 2
Fig. 2

Remark 3. Because of Theorems 1 and 2, near A-lattices can be alternatively
considered as algebras M = (M;w) of type (3) satisfying (C), (P1) — (P8) and <
will be referred to as the induced order of M = (M;w).

Since (P1) — (P8) are identities and (C) is a quasi-identity, we have

Corollary. The class of all near \-lattices (considered as ternary algebras) is a
quasivariety N .

For varieties which are subquasivarieties of A/, we can prove

Theorem 3. Fvery variety of near A-lattices is congruence distributive.

Proof. Take n = 4, and to(z,y,2) = x, t4(x,y,2) = z and t1(x,y, 2) = w(z,y, ),
tZ(xu y,Z) = ’LU(.’I,', (E7Z), t3($7y7 Z) = U)({E,y, Z)

Then to(z,y,z) ==
ti(z,y,z) =w(z,y,z) ==
to(x,y,x) = w(x,z,2) =2
t3($’y7 l‘) = w(x,y,x) =T
ta(z,y,z) =x
i even:  to(z,z,y) =z =w(z,y,x) =w(y,z,x) =t1(z,z,y)
t2(x7m,y) = w(xvxvy) = t3(£7$7y)
iodd:  ti(xz,y,y) = w(y,y,z) =w(,2,y) = t2(z,y,y)
ts(z, y,y) = w(z,y,y) = w(y,z,y) =y = ta(z,y,y).
Then tg,--- ,t4 are Jénsson’s terms and hence the variety is congruence dis-
tributive. O

Near A-lattices with sectional antitone involutions

Let A = (4;V) be a A-semilattice with a greatest element 1. We say that A is
with sectional involutions if for each a € A there is a mapping f, of [a,1] into
itself such that f,(f.(z)) =z for each z € [a,1] and fa(a) =1, fo(1) = a. We say
that A is with sectional antitone involutions if for each a € A, the mapping f,
is antitone, i.e. if z,y € [a,1] with z <y then f,(y) < fu(z).

For the sake of brevity, we will denote f,(z) = z°.



290 I. Chajda and M. Kolafik

Example 3. Consider the near A-lattice A from Fig. 1. Define e.g.
A =c d*=d a*=1,1"=a, *=d, d®=¢, 1°=1, 1"=0

and trivially for 2-element intervals. One can easily check that A is a near \-lattice
with sectional antitone involutions.

Let A = (A;V) be a near A-lattice with sectional involutions. Introduce new
binary operation o on A as follows :

zoy=(zxVy).

Since z V y € [y, 1], o is everywhere defined operation on A.

Lemma 3. Let A = (A4;V) be a near A-lattice with sectional involutions. Then
zoy=11if and only if x < y.

Proof. If x < y then zoy = (xVy)¥ = y¥ = 1. Conversely, suppose zoy = 1. Then
(x Vy)¥ = 1. Since the involution is a bijection with y¥ = 1, we conclude x Vy =y
thus also z < y. O

Theorem 4. Let A = (A;V) be a near \-lattice with sectional involutions. Then
the operation o satisfies the following identities:

(I1) zol=1, loz=x, zox =1

12) (zoy)oy=(yox)ou;

(
(I3) ((xoy)oy)oy=azouy;
(14) zo((((zoy)oy)oz)oz)=1;
(I5) zo(yox)=1.

In this case we have zVy = (zoy)oy.
If, moreover, the sectional involutions are antitone then o satisfies also

(16) ((((woy)oy)oz)oz)ox)o(yor)=1.
Proof.
(11) :

rol = (zv1)=1'=1;
lox = (1va)*=1% =u;
zox = (zVz)f=2"=1.

(I12) : (oy)oy=((xVy)Vy)¥=(xVy¥ =z Vythusalso (yox)ox=yVz=
xVy=(xoy)oy.
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(I3) : By the previous we have
(woy)oy)oy=(zVy)oy=((xVy Vy) =(@Vy) =zoy.

(I4) : Since A is a near A-lattice, it satisfies the identity (A3) whence z < (zVy)Vz.
Applying the previous result xVy = (xoy)oy, we obtain x < (((xoy)oy)oz)oz.
Due to Lemma 3 we get (I4).

x

(15): zo(yox) = (zV(yVa))W»" =((yva)")oV) =1.
Suppose now that the sectional involutions are antitone. Evidently z < y Vv
z,zVy<(zVy)Vzandz<zV ((zVy)Vz)=(xVy)Vz thus

((woy)oy)oz)oz)ox = (@Vy)Vz)oz=((zVy)V2)Va)
= @V (@Vy) V)l =(@Vy) V) < (@Vy)
— (yva) =you.

By Lemma 3 we obtain (I6). O

Remark 4. The third simple identity in (I1), namely x o x = 1, can be derived by
the other two remaining and (I12) as follows

mox:(lox)ox:(xol)olzl.

We are wonder if our operation o determines also the near A-lattice with sectional
involutions. We can state

Theorem 5. Let A = (A;0,1) be an algebra of type (2,0) satisfying the identities
(I1) - (I5). Define

<y ifand onlyif roy=1.
Then (A; <) is an ordered set with the greatest element 1 which is an upper \-
semilattice for

zVy=(zoy)oy.

The involution on each [a,1] is defined by z® = x o a for x € [a, 1].
If A satisfies, moreover, (I6) then for each p € A the involution on [p, 1] is antitone
and ([p,1]; <) is a A-lattice whose operations are V and A, defined by x N\p y =
(a? v yP)P.
Proof. By (I1), the relation < is reflexive and < 1 for each x € A. If 2 < gy
and y < x then, by (I12), x =loxz = (yox)ox = (xoy)oy = oy = y thus < is
antisymmetrical. Suppose z <y and y < z. Then, applying (I1) and (I4) we have

zoz = zo(loz)=zo0((yoz)oz)
= zo(((loy)oz)oz)
= zo((((oy)oy)or)oz) =1
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whence x < z. Thus < is transitive and hence an order on A.
Put zVy = (xoy)oy. By (I5) and (I2) we have x < (yox)ox = (roy) oy and,
by (I5), y < (zoy)oy thus (xoy)oy € U(zx,y). If x <y then x oy = 1 thus
(roy)oy=1loy=uy.
Hence, (A;V) is an upper A-semilattice with the greatest element 1.

Let « € [a,1] and define 2 = x o a. Then 2%* = (xoa)oa =z Va = z,
a® =agoa=1and 1% =10a = a thus it is an involution on [a, 1] for each a € A.
Suppose that A = (A4;0,1) satisfies also (I6). Then for z,y,z € A, z < y < z (i.e.,
Y,z € [z,1]) we have by (I6) ((xVy)Vz)ox < yox,ie., 2 = zox = ((xVy)Vz)ox <
yox = y", ie., every involution on each [z,1] is antitone. In this case, define for
a,b € [p,1]

aNpb=(aP V)P

Since aP, bP < aP V bP, we have

a = a’?> (@ VPP =anyb
b = PP > (a®?VIP)P=an,b

thus a Ap b € L(a,b). If a < b then a? > bP thus a Ap b = (aP V bP)P = aP? = q, i.e.,
Np satisfies (i) of Definition 2. Of course, x A,y = y Apx. Since z A,y < x, we have
xV (y Ap ) = x thus also (ii) of Definition 2 is satisfied; (iii) is clear. Hence, A, is
the associated operation and ([p, 1];V, A,) is a A-lattice. O

Example 4. The structure derived from A = (A;0,1) as shown in Theorem 5
need not be a near A-lattice. Consider the near A-lattice from Example 2. Then
we have ¢ Ay d = (¢* Vd*)* = (¢Vd)* = 1* = a in [a,1] but in [b,1] we have
cAhpd=(c®Vd)’ = (dVec)® =1° = b +# a. Hence, A, cannot serve as an associated
operation of (A4;V).

On the contrary, if A is a near A-lattice, we can prove :

Theorem 6. Let A= (A;V) be a near \-lattice with sectional antitone involutions

and N be its associated operation. If for b € A the section ([b,1],V, A) is a A-lattice
then

xAy= (((xob)o(yob))o(yob))ob
for all x,y € [b,1].
Proof. Since the section [b, 1] is a A-lattice, z A y is uniquely determined for each
z,y € [b,1]. By Theorem 5 (in the section [b,1]), we have z Ay = (2® v y*)°.
Moreover, also by Theorem 5, for each z,y € [b, 1] it holds:
(V) = (@ V) ob=((zob)V(yob)ob
— ((zob)o(yob))o(yob)ob.



Near A-lattices 293

Ortho A-semilattices

By an ortholattice is meant an algebra £ = (L; V, A, ,0, 1) where (L; V, A, 0, 1)
is a bounded lattice, x*+ =z, <y = y* <2t and 2 A+ = 0 (which is equiva-
lent to z Vot = 1).

Hence, it is a complemented lattice where the operation * of complementation is
an antitone involution on L. We can generalize this concept as follows:

Definition 4. By an ortho \-lattice is meant an algebra £ = (L;V,A,*,0,1)
such that (L;V, A,0,1) is a bounded A-lattice and = +— zt is an antitone involution
satisfying z Vot =1, z Azt = 0.

By an ortho A-semilattice is meant a A-semilattice with sectional antitone invo-
lutions (A; V) where all sections are ortho A-lattices, i.e., for each p € A ([p, 1]; <) is
an ortho A-lattice, such that «? is the orthocomplement of € [p, 1] in this section.

Example 5. The following A-lattice is an ortho A-lattice and ortho A-semilattice
as well.

1=0"
dt at
X X
0
Fig. 3

The orthocomplementation in intervals [z, 1] for « # 0 is determined uniquelly and
for x = 0 it is pointed in the diagram.

Theorem 7. Let A= (A;V) be a A-semilattice with sectional antitone involutions.
Then A is an ortho A-semilattice if and only if the derived operation xoy = (xVy)Y
satisfies the identity

(((oy)oy)o(zoy))o(zoy) =1 (%)

Proof. Obviously,
(woy)oy)o(zoy))o(roy) = ((xoy)oy)V(zoy)

= ((zoy)oy)V(((zoy)oy)oy)
= (zVvy)V(zVy),
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hence the identity (*) can be rewritten as
(xVy V(izVvy? =1

Trivially, z Vy € [y, 1] thus it is clear that in this case a Va¥ = 1 for each a € [y, 1].
Since y € L(a, a¥), we have for the operation A,

aNya’ =(@Vva") =(aVa)=1"=y

thus ¥ is an orthocomplement of a in [y, 1].
Conversely, if A is an ortho A-semilattice and z,y € A then zVy € [y, 1] and hence

(zVy) V(zVvy)?=1

whence the identity is evident. (|
Due to Theorem 7, the class O of ortho A-semilattices (considered in the signa-

ture (o,1)) forms a variety.

Theorem 8. The variety O of ortho A-semilattices is weakly regular.

Proof. Let t1(x,y) = v oy and ta(x,y) = yox. Then ty(z,z) =ta(x,z) =x0x =1
and conversely, if t1(z,y) = to(x,y) = 1 thenzoy =1 =yozx thusz <yandy <=z
whence © = y. Hence, t;,ty are Csdkany’s terms for weak regularity and hence O
is weakly regular. O
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