Characteristic of Partial Oxidation of Methane and Ni Catalyst Reforming using GlidArc Plasma

GlidArc 플라즈마를 이용한 메탄 부분산화 및 Ni 촉매 개질 특성

  • Kim, Seong-Cheon (BK21 Team for Hydrogen Production.Department of Environmental Engineering, Chosun University) ;
  • Chun, Young-Nam (BK21 Team for Hydrogen Production.Department of Environmental Engineering, Chosun University)
  • 김성천 (조선대학교 환경공학부.BK21 바이오가스기반 수소생산 사업팀) ;
  • 전영남 (조선대학교 환경공학부.BK21 바이오가스기반 수소생산 사업팀)
  • Published : 2008.12.31

Abstract

Low temperature plasma applied with partial oxidation is a technique to produce synthesis gas from methane. Low temperature plasma reformer has superior miniaturization and start-up characteristics to reformers using steam reforming or CO$_2$ reforming. In this research, a low temperature plasma reformer using GlidArc discharge was proposed. Reforming characteristics for each of the following variables were studied: gas components ratio (O$_2$/CH$_4$), the amount of steam, comparison of reaction on nickle and iron catalysts and the amount of CO$_2$. The optimum conditions for hydrogen production from methane was found. The maximum Hydrogen concentration of 41.1% was obtained under the following in this condition: O$_2$/C ratio of 0.64, total gas flow of 14.2 L/min, catalyst reactor temperature of 672$^{\circ}C$, the amount of steam was 0.8, reformer energy density of 1.1 kJ/L with Ni catalyst in the catalyst reactor. At this point, the methane conversion rate, hydrogen selectivity and reformer thermal efficiency were 66%, 93% and 35.2%, respectively.

부분산화가 적용된 저온플라즈마는 메탄으로부터 합성가스를 생산하는 기술이다. 저온 플라즈마 기술은 수증기 개질, 이산화탄소 개질을 이용한 개질기 보다 소형화와 시동특성이 우수한 장점을 가지고 있으며 다양한 분야에 적용이 가능하다. 본 연구에서는 GlidArc 방전을 이용한 저온플라즈마 개질기를 제안하였다. 개질 특성을 파악하고자 변수별 연구로서 가스 조성비율(O$_2$/CH$_4$), 수증기 주입량, 니켈과 철 촉매의 비교 및 이산화탄소 주입량에 대해 실험을 수행하였다. 최적의 수소 생산 조건은 O$_2$/C비가 0.64, 주입 가스유량은 14.2 L/min, 촉매의 반응기의 내부 온도는 672$^{\circ}C$, 주입 가스 량에 대한 수증기 유량 비율은 0.8 그리고 유입전력이 1.1 kJ/L일 때, 41.1%로 최대 수소 농도를 나타냈다. 그리고 이때 메탄의 전환율, 수소 수율 그리고 개질기 열효율은 각각 46.5%, 89.1%, 37.5%를 나타냈다.

Keywords

References

  1. El-Bousiffi, M. A., Gunn, D. J., "A dynamic study of steam-methane reforming," Int.l J. Heat and Mass Transfer, 50, 723-733(2007) https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.006
  2. Munera, J., Irusta, S., Cornaglia, L., Lombardo, E., "$CO^2$ reforming of methane as a source of hydrogen using a membrane reactor," Appl. Catal. A: General, 245, 383-395(2003) https://doi.org/10.1016/S0926-860X(02)00640-3
  3. Burke, N. R., Trimm, D. L., "Co-generation of energy and synthesis gas by partial oxidation of methane," Catalysis Today, 117, 248-252(2006) https://doi.org/10.1016/j.cattod.2006.05.023
  4. Laosiripojana, N., Assabumrungrat S., "Catalytic dry reforming of methane over high surface area ceria," Appl. Catal. B: Environ., 60, 107-116(2005) https://doi.org/10.1016/j.apcatb.2005.03.001
  5. Yanga, S., Kondob, J. N., Hayashia, K., Hiranoa, M., Domenb, K., and Hosono, H., "Partial oxidation of methane to syngas over promoted C12A7," Appl. Catal. A: General, 277, 239-246(2004) https://doi.org/10.1016/j.apcata.2004.09.030
  6. Khartona, V. V., Yaremchenko, A. A., Valentec, A. A., Sobyanind, V. A., Belyaevd, V. D., Semind, G. L., Veniaminovd, S. A., Tsipisa, E. V., Shaulaa, A. L., Fradea, J. R., and Rochac, J., "Methane oxidation over $Fe^-$, $Co^-$, $Ni^-$ and $V^-$ containing mixed conductors," Solid State Ionics, 176, 781-791(2005) https://doi.org/10.1016/j.ssi.2004.10.019
  7. Bromberg, L., Cohn, D. R., Rabinovich, A., Surma J. E., and Virden, J., "Compact plasmatron-boosted hydrogen generation technology for vehicular applications," Inter. J. Hydrogen Energy, 24(4), 341-350(1999) https://doi.org/10.1016/S0360-3199(98)00013-5
  8. Yang, Y., "Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Modeling," Plasma Chemistry and Plasma Processing, 23(2), 327-346(2003) https://doi.org/10.1023/A:1022924220062
  9. Czernichowski, A., "GlidArc Assisted Preparation of the Synthesis Gas from Natural and Waste Hydrocarbons Gases," Oil & Gas Science and Technology-Rev., 56, 181-198 (2001) https://doi.org/10.2516/ogst:2001018
  10. Iulian, R. and Jean-Marie C., "On a possible mechanism of the methane steam reforming in a gliding arc reactor," Chem. Eng. J., 91, 23-31(2003) https://doi.org/10.1016/S1385-8947(02)00043-8
  11. Nair, S. A., Nozaki, T., and Okazaki, K., "Methane oxidative conversion pathways in a dielectric barrier discharge reactor-Investigation of gas phase mechnism," Chem. Eng. J., 132, 85-95(2007) https://doi.org/10.1016/j.cej.2007.01.022
  12. Zhao, G. B., John, S., Zhang, J. J., Wang, L., Muknahallipatna, S., Hamann, J. C., Ackerman, J. F., Argyle, M. D., and Plumb, O. A., "Methane conversion in pulsed corona discharge reactors," Chem. Eng. J., 125(2), 67-79(2006) https://doi.org/10.1016/j.cej.2006.08.008
  13. Lee, D. H., Lim, K. T., Cha, M. S., and Song, Y. H., "Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane," Proceeding of the Combustion Institute, 31, 3343-3351(2007)
  14. Galloni, E. and Minutillo, M., "Performance of a spark ignition engine fuelled with reformate gas produced onboard vehicle," Int. J. Hydrogen Energy, 3, 271-281 (2006)