극미량 농도 물질의 측정 및 활성탄 흡착 처리

Detection of Extremely Low Concentration Compound and Adsorption by Activated Carbon

  • 발행 : 2008.09.30

초록

액체섬광계수기(LSC)를 이용한 극미량의 $^{14}$C-NDMA의 측정과 이를 이용해 활성탄 흡착 처리 가능성을 알아보았다. $^{14}$CNDMA를 측정하기 위한 시료와 섬광용액은 10 : 10의 혼합비율로 10분의 측정 시간으로 99.9%의 상관성과 재현성을 보이며 1 ng/L까지의 측정이 가능하였으며, S-A(Sigma-Aldrich co.)와 Dj(Daejung co.)의 분말활성탄을 이용하여 흡착 처리한 결과, 50$\sim$10,000 mg/L의 분말활성탄을 주입하여 90% 이상의 흡착처리가 가능함을 보였다. 또한 S-A가 Dj보다 흡착능이 약 2배 높게 나타났지만, NDMA의 흡착력이 다른 아민 계열의 물질보다 현저하게 낮아 요구되는 분말활성탄의 농도가 높게 요구되었다.

Since the difficulty of analysis at low concentration and the uncertainty of the removal mechanism for Nitrosodimethylamine (NDMA) have been reported, this study has detected extremely low concentration $^{14}$C-NDMA using the LSC(Liquid Scintillation Counter) and tested NDMA removal by Powdered Activated Carbon(PAC). The results showed the highest correlation over 99% when samples were measured with the mixture ratio of sample to scintillation liquid of 10 : 10 and at the detection time of 10 min. For $^{14}$C-NDMA removal by the PACs(S-A(Sigma-Aldrich co.) and Dj(Daejung co.)) raging from 50$\sim$10,000 mg/L, $^{14}$C-NDMA was removed over 90% by adsorption treatment. In addition, S-A showed twice greater adsorption capacity than that of Dj. However, the required PAC amount for $^{14}$C-NDMA removal was higher than that of other amine compounds.

키워드

참고문헌

  1. Bryant, E. A., Fulton, G. P., and Budd, G. C., 'Disinfection alternatives for safe drinking water,' Hazen and Sawyer, 10-20(1992)
  2. 이만호, '분리막과 전해소독장치를 이용한 정수처리공정 연구,' 서울시립대학교, 환경공학과, 박사학위논문, pp. 52-59(2007)
  3. 환경부, '수도시설의 청소 및 위생관리 등에 관한 규칙,' (2007)
  4. 김진근, 정상기, 신창수, 조혁진, '국내정수장의 소독부산물 생성 특성,' 상하수도학회논문집, 19(3), 301-311(2005)
  5. Tchobanoglous, G., Burton, F. L., Stensel, H. D., 'Wastewater engineering treatment and reuse 4th edition,' (2004)
  6. Charrois, J. W. A. and Hrudey, S. E., 'Breakpoint chlorination and free-chlorine contact time: Implication for drinking water N-Nitrosodimethylamine concentrations,' Water Res., 41, 674-682(2007) https://doi.org/10.1016/j.watres.2006.07.031
  7. 김승현, 유이종, 'NDMA; 새로운 도전', 대한환경공학회학회지, 24(4), 743-746(2002)
  8. Mitch, W. A. and Sedlak, D. L., 'Formation of N-Nitrosodimethylamine(NDMA) from dimethylamine during chlorination,' Environ. Sci. Technol., 36, 588-595(2002) https://doi.org/10.1021/es010684q
  9. Mitch, W. A., Gerecke, A. C., and Sedlak, D. L., 'A N-Nitrosodimethylamine(NDMA) precursor analysis for chlorination of water and wastewater,' Water Res., 37, 3733-3741(2003) https://doi.org/10.1016/S0043-1354(03)00289-6
  10. Elif, P. M. and Sedlak, D. L., 'The fate of wastewaterderived NDMA precursors in the aquatic environment,' Water Res., 40, 1287-1293(2006) https://doi.org/10.1016/j.watres.2006.01.012
  11. Mitch, W. A., Sharp, J. O., Trussell, R. R., and Valentine, R. L., Alvarez-Cohen, L., Sedlak, D. L., 'N-Nitrosodimethylamine(NDMA) as a drinking water contaminant: a review,' Environ. Eng. Sci., 20(5), 389-404(2003) https://doi.org/10.1089/109287503768335896
  12. Fleming, E. C., Pennington, J. C., Wachob, B. G., Howe, R. A. and Hill, D. O., 'Removal of N-nitrosodimethylamine from waters using physical-chemical techniques,' J. Hazard. Mater., 51, 151-164(1996) https://doi.org/10.1016/S0304-3894(96)01833-X
  13. Dean-Raymond, D. and Alexander, M., 'Plants uptake and leaching of dimethylnitrosamine,' Nature, 262, 394-396(1976) https://doi.org/10.1038/262394a0