Determination of the Optimum NH$_3$-N/NO$_2$-N Ratio by Anaerobic Batch Test in Anaerobic Ammonium Oxidation Process

혐기성 암모늄 산화공정에서 혐기성 회분식 실험에 의한 NH$_3$-N/NO$_2$-N의 최적비 산정

  • Lee, Hwan-Hee (Center for Environmental Technology Research, KIST) ;
  • Kim, I-Jung (Center for Environmental Technology Research, KIST) ;
  • Jung, Jin-Young (Center for Environmental Technology Research, KIST) ;
  • Kim, Jee-Hyung (Department of Civil, Environmental and Architectural Engineering, Korea University)
  • 이환희 (한국과학기술연구원 환경기술연구단) ;
  • 김이중 (한국과학기술연구원 환경기술연구단) ;
  • 정진영 (한국과학기술연구원 환경기술연구단) ;
  • 김지형 (고려대학교 건축사회환경공학과)
  • Published : 2008.07.31

Abstract

Nitrite and free ammonia have been known as substrate inhibitors in anaerobic ammonium oxidation. To reduce inhibitory effect of these substrates, the NH$_3$-N/NO$_2$-N ratio in the influent could be properly controlled in anaerobic ammonium oxidation process. Five kinds of NH$_3$-N/NO$_2$-N ratio were assayed in batch to find optimum NH$_3$-N/NO$_2$-N ratio, curtailing substrate inhibition. As the results of batch test, the highest T-N removal efficiency of 88% was obtained at 1.00 : 1.30 of NH$_3$-N/NO$_2$-N ratio. In addition, rate constants for ammonium and nitrite in zero-order kinetics were found to be the highest values as 7.66 mg/L$\cdot$hr and 11.89 mg/L$\cdot$hr at 1.00 : 1.30 ratio, respectively. However, as for the specific anammox activity, the ratio of NH$_3$-N/NO$_2$-N ratio was recommended as 1 : 1.15 which can maintain the highest SAA during continuous operation and preclude the accumulation of nitrite in the reactor.

혐기성 암모니아 산화공정에서 nitrite는 저해인자로 잘 알려져 있고, 최근에는 유리 암모니아 역시 anammox bacteria에 저해 영향을 주는 것으로 보고되고 있다. 유입수의 암모니아와 아질산의 비율이 연속운전에서 효과적인 질소제거에 중요한 인자가 되며, 연속운전 반응기에서는 유리 암모니아와 아질산의 축적을 방지하기 위해 유입수의 NH$_3$-N/NO$_2$-N-N비를 조절할 필요가 있다. 이에 본 연구에서는 다섯 가지 종류의 NH$_3$-N/NO$_2$-N-N비를 회분식 실험을 통해 잔류 암모니아성 질소와 아질산성 질소의 농도를 최소화하는 비를 조사하였다. 회분식 실험 결과 실험 26시간 후에 1.00 : 1.30의 비에서 88%에 달하는 총질소 제거율이 나타났다. 그리고 혐기성 암모늄 산화 반응은 0차 반응을 나타내었고, 암모니아와 아질산의 반응 속도상수는 1.00 : 1.30의 비에서 각각 7.66 mg/L$\cdot$hr과 11.89 mg/L$\cdot$hr로 가장 높게 나타났다. 혐기성 암모늄 산화균 활성도를 측정해본 결과 1.00 : 1.15의 비에서 미생물의 활성도가 가장 우수한 것으로 나타났다. 회분식 실험의 결과를 통해, 이론적 반응비과 비슷한 1.00:1.30에서는 반응속도가 크고 총질소 제거율도 높은 반면 혐기성 암모늄 산화균은 이론적 반응비보다 다소 낮은 아질산 농도에서 안정하다는 것을 확인할 수 있었다.

Keywords

References

  1. Windey, K., De Bo, I., and Verstraete, W., 'Oxygenlimited autotrophic nitrification-denitrification(OLAND) in a rotating biological contactor treating high-salinity wastewater,' Water Res., 39, 4512-4520(2005) https://doi.org/10.1016/j.watres.2005.09.002
  2. Tsushima, I., Ogasawara, Y., Kindaichi, T., Satoh, H., and Okabe, S., 'Development of high-rate anaerobic ammonium-oxidizing(anammox) biofilm reactors,' Water Res., 41, 1623-1634(2007) https://doi.org/10.1016/j.watres.2007.01.050
  3. Wouter R.L., van der Stara, Wiebe R. Abmab, Dennis Blommersc, Jan-Willem Mulderc, Takaaki Tokutomid, Marc Strouse, Cristian Picioreanua, Mark C.M., and van Loosdrechta, 'Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam,' Water Res., 41, 4149-4163(2007) https://doi.org/10.1016/j.watres.2007.03.044
  4. Fux, C., Marchesi, V., Brunner, I., and Siegrist, H., 'Anaerobic ammonium oxidation of ammonium-rich waste streamsin fixed-bed reactors,' Water Sci. Technol., 49 (11-12), 77-82(2004) https://doi.org/10.2166/wst.2004.0809
  5. Imajo, U., Tokutomi, T., and Furukawa, K., 'Granulation of Anammox microorganisms in up-flow reactors,' Water Sci. Technol., 49(5) 155-164(2004)
  6. Guven, D., van de Pas-Schoonen, Katinka, S., Markus C., Strous, Marc, Jetten, Mike S. M., Sözen, Seval, Orhon, Derin, and Schmidt, Ingo, 'Implementation of the Anammox Process for Improved Nitrogen Removal,' Environ. Sci. and Heal. PartA, 39(7) 1729-1738(2004) https://doi.org/10.1081/ESE-120037873
  7. Strous, M., van Gerven, E., Kuenen, J.G. and Jetten, M., 'Ammonium removal from concentrated waste streams with the Anaerobic Ammonium Oxidation(Anammox) process in different reactor configurations,' Water Res., 31(8), 1955-1962(1997) https://doi.org/10.1016/S0043-1354(97)00055-9
  8. Ahn, Y.-H., Hwang, I.-S., and Min, K.-S., 'ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste,' Water Sci. Technol., 49(5), 145- 154(2004)
  9. Guven, M., Dapena, A., Kartal, B., Schmid, M.C., Mass, B., van de Pas-Schoonen, K., Sozen, S., Mendez, R., Op den Camp, H., Jetten, S.M., Strous, M., and Schmidt, I., 'Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria,' Appl. Environ. Microbiol., 71, 1066-1071(2005) https://doi.org/10.1128/AEM.71.2.1066-1071.2005
  10. Miyoko W., Takaaki T., Hiroshi Y., and Yasuo T., 'Nitrogen removal from animal waste treatment water by anammox enrichment,' Bioresour. Technol., 98(14), 2774-2780(2006)
  11. Tsushima, I., Ogasawara, Y., Kindaichi, T., Satoh, H., and Okabe, S., 'Development of high-rate anaerobic ammonium- oxidizing(anammox) biofilm reactors,' Water Res., 41, 1623-1634(2007) https://doi.org/10.1016/j.watres.2007.01.050
  12. Dopena-Mora, A., Fernandez, I., Campos, J.L., Mosquere- Corral, A., Mendez, R., Jetten, M.S.M., 'Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production,' Enzyme. Microb. Technol., 40, 859-865(2007) https://doi.org/10.1016/j.enzmictec.2006.06.018
  13. Kim, I., Lee, H.H., Chung, Y.C., and Jung, J.Y., 'Comparison of nitrogen removal performances in biofilm and granule anammox(anaerobic ammonium oxidation) processes,' 11th IWA World Congress on Anaerobic Digestion, Brisbane, Australia(2007)
  14. Buys, B.R., Mosquera-Corral, A., Sanchew, M., and Mendez, R., 'Developent and application of a denitrification test based on gas production,' Water Sci. Technol., 41, 113-120(2000)
  15. Dapena-Mora, A., Campos, J.L., Mosquera-Corral, A., Jetten, M.S.M., and Mendez, R., 'Stability of the Anamox process in a gas-lift reactor and a SBR,' J. Biotehnol., 110, 159-170(2004a)
  16. Lay, J.-J., Lee, Y.-J., and Noike, T., 'Feasibility of biological hydrogen production from organic fraction of municipal solid waste,' Water Res., 33(11), 2579-2586 (1999) https://doi.org/10.1016/S0043-1354(98)00483-7