Studies on the Combustion Characteristics and NO Distribution in the Pulverized Coal Fired Boiler

대용량 미분탄 보일러의 연소특성 및 NO 분포 특성 연구

  • Park, Ho-Young (Advanced Power Generation & Combustion Group, Korea Electric Power Research Institute, KEPCO) ;
  • Kim, Young-Joo (Advanced Power Generation & Combustion Group, Korea Electric Power Research Institute, KEPCO)
  • 박호영 (한전전력연구원 신발전연소그룹) ;
  • 김영주 (한전전력연구원 신발전연소그룹)
  • Published : 2008.05.31

Abstract

Three dimensional numerical analysis were performed to investigate the combustion characteristics in a tangentially fired pulverized coal boiler. The predicted values at the outlet of economizer for the gas temperature, O$_2$, NO, CO were been compared with the measured data. By using the actual operating conditions of the power plant, the distribution of velocity, gas temperature, O$_2$, CO, CO$_2$ and NO as well as the particle tracking in the boiler were investigated. Throughout the present study, the non-uniform distribution of flue gas temperature in front of the final superheater might be resulted from the residual swirl flow in the upper furnace of the boiler. The present analysis on non-uniform distribution of the gas temperature could provide the useful information to prevent the frequent tube failure from happening in the final superheater of the tangentially coal-fired boiler.

접선 연소식 미분탄 보일러의 연소특성 분석을 위한 3차원 전산해석 연구를 수행하였다. 해석 결과의 건전성 검증을 위하여 보일러 출구, 즉 절탄기 후단에서의 가스 온도, O$_2$, NO, CO 농도를 발전소의 실제 측정 결과와 비교하였다. 실제 발전소의 운전조건을 기준으로 보일러내의 가스온도, 속도 분포를 해석하였으며 주요 가스농도인 O$_2$, CO, CO$_2$, NO의 분포와 char 입자 궤적을 구하였다. 본 연구를 통하여 최종과열기 전단에서의 가스 온도가 불균일하게 분포함을 알 수 있었으며, 이는 보일러 상부 연소로에서의 잔류 선회유동의 결과인 것으로 파악되었다. 불균일한 가스온도 분포에 대한 해석결과는 접선연소식 미분탄 보일러에서 자주 발생하는 튜브 파손을 방지하는데 있어 유용한 자료로 활용될 수 있을 것이다.

Keywords

References

  1. Lockwood, F. C., Papadopoulos, C., Abbs., A. S., "Prediction of corner-fired power station combustor," Combust. Sci. Technol., 58, 5-23(1988) https://doi.org/10.1080/00102208808923953
  2. Fan., J. R., Sun, P., Zeng, Y. Q., Ma, Y. L., and Cen, K. F., "Numerical and experimental investigation on the reduction of NOx emission in a 600 MW utility furnace by using OFA," Fuel, 78, 1387-1394(1999) https://doi.org/10.1016/S0016-2361(99)00062-9
  3. Fan., J. R., Qian, L., Ma, Y., Sun, P., and Cen, K. F., "Computational modeling of pulverized coal combustion processes in tangentially fired furnaces," Chemical Engineering Journal, 81, 261-269(2001) https://doi.org/10.1016/S1385-8947(00)00212-6
  4. Yin, C., Caillat, S., Harion, J. L., Baudoin, B., and Perez, E., "Investigation of the flow, combustion, heat-transfer and emissions from a 609 MW utility tnagentially fired pulverized-coal boiler," Fuel, 81, 997-1006(2002) https://doi.org/10.1016/S0016-2361(02)00004-2
  5. Yin, C., Rosendahl, L., and Condra, T. J., "Further study of the gas temperature deviation in large-scale tangentially coal-fired boilers," Fuel, 82, 1127-1137(2003) https://doi.org/10.1016/S0016-2361(02)00418-0
  6. 한국전력공사, 현대엔지니어링주식회사, "화력발전소 보일러 운전지침서," (2004)
  7. 한국전력공사, 현대엔지니어링주식회사, "화력발전소 보일러 보수지침서," Vol I(2004)
  8. ANSYS, CFX 11.0 User's Guide(2005)
  9. Siegel, R. and Howell, J. R., "Thermal radiation Heat Transfer," Hemisphere Publishing Corporation, Washington D.C.(1992)
  10. Magnussen, B. F. and Hjertager, B. H., "On Mathematical Models of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion, 16th Symp. (Int'l) on Combustion," Cambridge, MA, Aug. pp. 15-20(1976)
  11. Spalding, D. B., "Mixing and Chemical Reaction in Steady Confined Turbulent Flames," 13th Symp. (Int'l). on Combustion, The Combustion Inst., Salt Lake City, UT, Aug. pp. 23-29(1970)
  12. Badzioch, S., Hawksley, P. G. W., "Kinetics of thermal decomposition of pulverized coal particles," Ind. Eng. Chem. Proc. design Dev., 9, 521(1970) https://doi.org/10.1021/i260036a005
  13. Field, M. A., "Rate of Combustion of Size-Graded Fractions of Char from a Low Rank Coal between 1200 K-2000 K," Combustion & Flame, 13, 237-252(1969) https://doi.org/10.1016/0010-2180(69)90002-9