DOI QR코드

DOI QR Code

Simultaneous Biofiltration of H2S, NH3 and Toluene using an Inorganic/Polymeric Composite Carrier

  • 발행 : 2008.03.28

초록

Simultaneous removal of ternary gases of $NH_3$, $H_2S$ and toluene in a contaminated air stream was investigated over 180 days in a biofilter. A commercially available inorganic/polymeric composite chip with a large void volume (bed porosity > 0.80) was used as a microbial support. Multiple microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for $H_2S$ removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) ranged from 60 - 120 seconds and the inlet feed concentration was $0.0325\;g/m^3-0.0651\;g/m^3$ for $NH_3$, $0.0636\;g/m^3-0.141\;g/m^3$ for $H_2S$, and $0.0918\;g/m^3-0.383\;g/m^3$ for toluene, respectively. The observed removal efficiency was 2% - 98% for $NH_3$, 2% - 100% for $H^2S$, and 2% - 80% for toluene, respectively. Maximum elimination capacity was about $2.7\;g/m^3$/hr for $NH_3$, > $6.4\;g/m^3$/hr for $H_2S$ and $4.0\;g/m^3$/hr for toluene, respectively. The inorganic/polymeric composite carrier required 40 - 80 days of wetting time for biofilm formation due to the hydrophobic nature of the carrier. Once the surface of the carrier was completely wetted, the microbial activity became stable. During the long-term operation, pressure drop was negligible because the void volume of the carrier was two times higher than the conventional packing materials.

키워드

참고문헌

  1. Devinny, J. S., Deshusses, M. A., and Webster, T. S., Biofiltration for Air Pollution Control, CRC Press, Boca Raton, FL, USA (1998)
  2. Moe, W. M., and Irvine, R. L., 'Polyurethane foam medium for biofiltration. Part II: Operation and performance,' J. Env. Eng., 126, 826-832 (2000) https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(826)
  3. Torkian, A., Dehghanzadeh, R., and Hakimjavadi, M., 'Biodegradation of aromatic hydrocarbons in a compost biofilter,' J. Chem. Technol. Biotechnol., 78, 795-801 (2003) https://doi.org/10.1002/jctb.823
  4. Kim, J. O., 'Removal of gaseous tichloroethylene and trachloroethylene by an activated carbon bofilter,' Environ. Eng. Res., 2, 9-19 (1997)
  5. Abumaizar, R. J., Kocher, W., and Smith, E. H., 'Biofiltration of BTEX contaminated air streams using compost-activated carbon filter media,' J. Hazard. Mater., 60, 111-126 (1998) https://doi.org/10.1016/S0304-3894(97)00046-0
  6. Ergas, S. J., Schroeder, E. D., Chang, D. P. Y., and Morton, R. L., 'Control of volatile organic compound emissions using a compost biofilter,' Water Environ. Res., 67, 816-821 (1995) https://doi.org/10.2175/106143095X131736
  7. Moe, W. M., and Irvine, R. L., 'Polyurethane foam based biofilter media for toluene removal,' Wat. Sci. Technol., 43, 35-42 (2001)
  8. Moe, W. M., and Irvine, R. L., 'Effect of nitrogen limitation on performance of toluene degrading biofilters during transient loading,' Wat. Res., 35, 1407-1414 (2001) https://doi.org/10.1016/S0043-1354(00)00417-6
  9. Amarsanaa, A., Shin, W. S., Choi, J.-H., and Choi, S.-J., 'Biofiltration of gaseous toluene using adsorbent containing polyurethane foam media,' Env. Eng. Res., 11, 1-13 (2006) https://doi.org/10.4491/eer.2006.11.1.001
  10. Amarsanaa, A., Shin, W. S., Choi, J.-H., and Choi, S.-J., 'Biofiltration of gaseous toluene using activated carbon containing polyurethane foam media,' J. Environ. Sci., 15, 513-525 (2006) https://doi.org/10.5322/JES.2006.15.6.513
  11. Delhomenie, M., Bibeau, L., Bredin, N., Roy, S., Broussau, S., Brzezinski, R., Kugelmass, J. L., and Heitz, M., 'Biofiltration of air contaminanted with toluene on a compost-based bed,' Adv. Environ. Res., 6, 239-254 (2002) https://doi.org/10.1016/S1093-0191(01)00055-7
  12. Kinney, K. A., Wright, W., Chang, D. P., and Schroeder, E. D., Biodegradation of vapor phase contaminants, In: Bioremediation: Principles and Practice. S. K. Sikdar and R. L. Irvine (eds.). Technomic Press, Lancaster, PA, USA (1997)
  13. Kim, S. H., Oh, K. J., Moon, J. H., and Kim, D., 'Simultaneous removal of $H_2S$ and $NH_3$ using Thiobacillus sp. IW in a three-phase fluidized-bed bioreactor,' J. Microbiol. Biotechnol., 10, 419-422 (2000)
  14. Chung, Y., Huang, C., and Tseng, C., 'Biological elimination of $H_2S$ and $NH_3$ from waste gases by biofilter packed with immobilized heterotrophic bacteria,' Chemosphere, 43, 1043-1050 (2001) https://doi.org/10.1016/S0045-6535(00)00211-3
  15. Kim, H. S., Biofiltration for Removal of Odor Gases, Ph.D. Dissertation, Pohang University of Science and Technology, Pohang, Republic of Korea (2002)
  16. Kim, H. S., Kim, Y. J., Chung, J. S., and Xie, Q, 'Long-term operation of a biofilter for simultaneous removal of hydrogen sulfide and ammonia, J. Air Waste Manage. Assoc., 52, 1389-1398 (2002) https://doi.org/10.1080/10473289.2002.10470871
  17. Liu, Y., Xie, Q., Sun, Y., Chen, J., Xue, D., and Chung, J. S., 'Simultaneous removal of ethyl acetate and toluene in air stream using compost-based biofilters,' J. Hazard. Mater., 95, 199-213 (2002) https://doi.org/10.1016/S0304-3894(02)00139-5
  18. Acuna, M. E., Villanueva, C., Cardenas, B., Christen, P., and Revah, S., 'The effect of nutrient concentration on biofilm formation on peat and gas phase toluene biodegradation under biofiltration conditions,' Process Biochem., 38, 7-13 (2002) https://doi.org/10.1016/S0032-9592(02)00039-0
  19. Cox, H. H. J., and Deshusses, M. A., 'Co-treatment of $H_2S$ and toluene in a biotrickling filter,' Chem. Eng. J., 87, 101-110 (2002) https://doi.org/10.1016/S1385-8947(01)00222-4
  20. Malhautier, L., Gracian, C., Roux, J., Fanlo, J., and Cloirec, P. L., 'Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture,' Chemosphere, 50, 145-153 (2003) https://doi.org/10.1016/S0045-6535(02)00395-8
  21. Zilli, M., Palazzi, E., Sene, L., Converti, A., and Borghi, M. D., 'Toluene and styrene removal from air in biofilter,' Process Biochem., 37, 423-429 (2003) https://doi.org/10.1016/S0032-9592(01)00228-X
  22. Lim, K. H., and Park, S. W., 'The treatment of waste-air containing mixed solvent using a biofilter 1. Transient behavior of biofilter to treat waste-air containing ethanol,' Korean J. Chem. Eng., 21, 1161-1167 (2004) https://doi.org/10.1007/BF02719488
  23. Lim, K. H., 'The treatment of waste-air containing mixed solvent using a biofilter 2. Treatment of waster-air containing ethanol toluene in a biofilter,' Korean J. Chem. Eng., 22, 228-233 (2005) https://doi.org/10.1007/BF02701489
  24. Park, S. J., Cho, K. S., Hirai, M., and Shoda, M., 'Removability of malodorous gases from a night soil treatment by a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44,' J. Ferment. Bioeng., 76, 55-59 (1993) https://doi.org/10.1016/0922-338X(93)90053-B
  25. Chung, Y., Huang, C., Tseng, C., and Pan, J. R., 'Biotreatment of $H_2S$- and $NH_3$-containing waste gases by co-Immobilized cells biofilter,' Chemosphere, 41, 329-336 (2000) https://doi.org/10.1016/S0045-6535(99)00490-7
  26. Oyarzun, P., Arancibia, F., Canales, C., and Aroca, G. E., 'Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus,' Process Biochem., 39, 165-170 (2003) https://doi.org/10.1016/S0032-9592(03)00050-5
  27. Shojaosadati, S. A., and Elyasi, S., 'Removal of hydrogen sulfide by the compost biofilter with sludge of leather industry,' Resour. Conserv. Recycl., 27, 139-144 (1999) https://doi.org/10.1016/S0921-3449(98)00093-7
  28. Busca, G., and Pistarino, C., 'Abatement of ammonia and amines from waste gases: A summary,' J. Loss Prevent Proc., 16, 157-163 (2003) https://doi.org/10.1016/S0950-4230(02)00093-1
  29. Korean Ministry of Environment, Permissible air pollutant emission standards, Korean Ministry of Environment Printing Office, Seoul, Republic of Korea (2005)
  30. Cho, K., Ryu, H. W., and Lee, N. Y., 'Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans,' J. Biosci. Bioeng., 90, 25-31 (2000) https://doi.org/10.1016/S1389-1723(00)80029-8
  31. Hirai, M., Kamatomo, M., Yani, M., and Shoda, M., 'Comparison of biological $H_2S$ removal characteristics among four inorganic packing materials,' J. Biosci. Bioeng., 91, 396-402 (2001) https://doi.org/10.1263/jbb.91.396
  32. Elias, A., Barona, A., Arreguy, A., Rios, J., Aranguiz, I., and Penas, J., 'Evaluation of a packing material for the biodegradation of $H_2S$ and product analysis,' Process Biochem., 37, 813-836 (2002) https://doi.org/10.1016/S0032-9592(01)00287-4
  33. Shinabe, K., Oketani, S., Ochi, T., Kanchanatawee, S., and Matsumura, M., 'Characteristics of hydrogen sulfide removal in a carrier-packed biological deodorization system,' Biochem. Eng. J., 5, 209-217 (2002) https://doi.org/10.1016/S1369-703X(00)00061-9
  34. Yoon, I. K., Kim, C. N., and Park, C. H., 'Optimum operating conditions for the removal of volatile organic compounds in a compost-packed biofilter,' Korean J. Chem. Eng., 19, 954-959 (2002) https://doi.org/10.1007/BF02707217
  35. Delhomenie, M., Bibeau, L., Gendron, J., Brzezinski, R., and Heitz, M. A., 'Study of clogging in a biofilter treating toluene vapors,' Chem. Eng. J., 94, 211-222 (2003) https://doi.org/10.1016/S1385-8947(03)00052-4
  36. Row, R., Toff, R., and Waide, J., 'Microtechnique for mostprobable- number analysis,' Appl. Environ. Microbiol., 33, 675-680 (1977)
  37. Schmidt, W. L., and Belser, L. W., Autotrophic nitrifying bacteria, In: Methods of Soil Analysis. Part 2., Microbiological and Biochemical Properties (Soil Science Society of America Book, No 5), 2nd ed., R. W. Weaver, S. Angle, P. Bottomley, D. Bezdiecek, S. Smith, A. Tabatabai, A. Wollum, S. H. Mickelson, and J. M. Bigham (eds.), Soil Science Society of America, Madison, WI, pp. 159-197 (1994)
  38. Kim, H. S., Xie, Q., Kim, Y. J., and Chung, J. S., 'Biofiltration of ammonia gas with sponge cube coated with mixtures of activated carbon and zeolite,' Environ. Technol., 23, 839-847 (2002) https://doi.org/10.1080/09593332308618355
  39. Edwards, V. H., 'The influence of high substrate concentrations on microbial kinetics,' Biotechnol. Bioeng., 7, 679-712 (1970)
  40. Kang, Y. T., Nagano, T., and Kashiwagi, T., 'Mass transfer correlation of $NH_3$-$H_2S$ bubble absorption,' Int. J. Refrig., 25, 878-886 (2002) https://doi.org/10.1016/S0140-7007(01)00096-2
  41. Terasaka, K., Oka, J., and Tsuge, H., 'Ammonia absorption from a bubble expanding at a submerged orifice into water,' Chem. Eng. Sci., 57, 3757-3765 (2002) https://doi.org/10.1016/S0009-2509(02)00308-1
  42. Cesario, M. T., Beverloo, W. A., Tramper, J., and Beefink, H. H., 'Enhancement of gas-liquid mass transfer rate of apolar pollutants in the biological waste gas treatment by a dispersed organic solvent,' Enzyme Microb. Technol., 21, 578-588 (1997) https://doi.org/10.1016/S0141-0229(97)00069-0
  43. Bailey, J. E., and Ollis, D. F., Biochemical Engineering Fundamentals, 2nd ed., McGraw-Hill, Inc., pp. 928 (1985)
  44. Park B. G., and Chung, J. S., 'Biokinetics on simultaneous biofiltration of $H_2S$, $NH_3$ and toluene in waste air,' Korean J. Chem. Eng., 23, 428-434 (2006)

피인용 문헌

  1. Endophytic bacterial and fungal communities transmitted from cotyledons and germs in peanut (Arachis hypogaea L.) sprouts vol.24, pp.19, 2017, https://doi.org/10.1007/s11356-017-9254-4
  2. Simultaneous removal of ammonia and volatile organic compounds from composting of dead pigs and manure using pilot-scale biofilter vol.71, pp.3, 2008, https://doi.org/10.1080/10962247.2020.1841040
  3. Co-Treatment with Single and Ternary Mixture Gas of Dimethyl Sulfide, Propanethiol, and Toluene by a Macrokinetic Analysis in a Biotrickling Filter Seeded with Alcaligenes sp. SY1 and Pseudomonas Puti vol.7, pp.4, 2008, https://doi.org/10.3390/fermentation7040309