DOI QR코드

DOI QR Code

Multi-walled Carbon Nanotube-Reinforced Hydroxyapatite Coating on Ti Substrates by Aerosol Deposition

에어로졸 증착법에 의해 티타늄 기판위에 제조된 다중벽 탄소나노튜브 강화 수산화아파타이트 코팅층

  • Hahn, Byung-Dong (Functional Ceramics Research Group, Department of Powder Materials, Korea Institute of Materials Science) ;
  • Park, Dong-Soo (Functional Ceramics Research Group, Department of Powder Materials, Korea Institute of Materials Science) ;
  • Ryu, Jung-Ho (Functional Ceramics Research Group, Department of Powder Materials, Korea Institute of Materials Science) ;
  • Choi, Jong-Jin (Functional Ceramics Research Group, Department of Powder Materials, Korea Institute of Materials Science) ;
  • Yoon, Woon-Ha (Functional Ceramics Research Group, Department of Powder Materials, Korea Institute of Materials Science) ;
  • Lee, Byung-Kuk (Functional Ceramics Research Group, Department of Powder Materials, Korea Institute of Materials Science) ;
  • Kim, Hyoun-Ee (School of Materials Science and Engineering, Seoul National University)
  • 한병동 (한국기계연구원 부설 재료연구소 분말재료연구부 기능세라믹연구그룹) ;
  • 박동수 (한국기계연구원 부설 재료연구소 분말재료연구부 기능세라믹연구그룹) ;
  • 류정호 (한국기계연구원 부설 재료연구소 분말재료연구부 기능세라믹연구그룹) ;
  • 최종진 (한국기계연구원 부설 재료연구소 분말재료연구부 기능세라믹연구그룹) ;
  • 윤운하 (한국기계연구원 부설 재료연구소 분말재료연구부 기능세라믹연구그룹) ;
  • 이병국 (한국기계연구원 부설 재료연구소 분말재료연구부 기능세라믹연구그룹) ;
  • 김현이 (서울대학교 재료공학부)
  • Published : 2008.10.31

Abstract

Multi-walled carbon nanotube(CNT) reinforced hydroxyapatite composite coating with a thickness of $5{\mu}m$ has been successfully deposited on Ti substrate using aerosol deposition(AD). The coating had a dense microstructure with no cracks or pores, showing good adhesion with the Ti substrate. Microstructural observation using field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM) showed that CNTs with original tubular morphology were found in the hydroxyapatite-CNT(HA-CNT) composite coating. Measurements of hardness and elastic modulus for the coating were performed by nanoindentation tests, indicating that the mechanical properties of the coating were remarkably improved by the addition of CNT to HA coating. Therefore, HA-CNT composite coating produced by AD is expected to be potentially applied to the coating for high load bearing implants.

Keywords

References

  1. M. Jarcho, "Calcium Phosphate Ceramics as Hard Tissue Prosthetics," Clin. Orthop. Rel. Res., 157 259-78 (1981)
  2. L. L. Hench, "Bioceramics: From Concept to Clinic," J. Am. Ceram. Soc., 74 [7] 1487-510 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  3. Y. C. Tsui, C. Doyle, and T. W. Clyne, "Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates. Part I: Mechanical Properties and Residual Stress Levels," Biomaterials, 19 2015-29 (1998) https://doi.org/10.1016/S0142-9612(98)00103-3
  4. H. Liang, B. Shi, A. Fairchild, and T. Cale, "Applications of Plasma Coatings in Artificial Joints: an Overview," Vacuum, 73 317-26 (2004) https://doi.org/10.1016/j.vacuum.2003.12.160
  5. W. Bonfield, "Composites for Bone Replacement," J. Biomed. Eng., 10 522-26 (1988) https://doi.org/10.1016/0141-5425(88)90110-0
  6. L. Fu, K. A. Khor, and J. P. Lim, "Effects of Yttria-Stabilized Zirconia on Plasma-Sprayed Hydroxyapatite/Yttria- Stabilized Zirconia Composite Coatings," J. Am. Ceram. Soc., 85 [4] 800-06 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00175.x
  7. Z. Evis and R. H. Doremus, "Coatings of Hydroxyapatite- Nanosize Alpha Alumina Composites on Ti-6Al-4V," J. Euro. Ceram. Soc., 59 [29-30] 3824-27 (2005)
  8. S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, 354 56-8 (1991) https://doi.org/10.1038/354056a0
  9. A. Peigney, "Composite Materials: Tougher Ceramics with Nanotubes," Nat. Mater., 2 15-6 (2003) https://doi.org/10.1038/nmat794
  10. M. S. Dresselhaus and H. Dai, "Carbon Nanotubes: Continued Innovations and Challenges," MRS Bull., 29 [4] 237-39 (2004) https://doi.org/10.1557/mrs2004.74
  11. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, "Exceptionally High Young's Modulus Observed for Individual Carbon Nanotube," Nature, 381 678-80 (1996) https://doi.org/10.1038/381678a0
  12. J. P. Salvetat, J. M. Bonard, and N. H. Thomson, "Mechanical Properties of Carbon Nanotubes," Appl. Phys. A-Mater. Sci. Proc., 63 [3] 255-60 (1999)
  13. W. A. Curtin and B. W. Sheldon, "CNT-Reinforced Ceramics and Metals," Mater. Today, 7 [11] 44-49 (2004)
  14. G. D. Zhan, J. D. Kuntz, J. Wan, and A. K. Mukherjee, "Single- Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocomposites," Nat. Mater., 2 [1] 38-42 (2003) https://doi.org/10.1038/nmat793
  15. J. Chlopek, B. Czajkowska, B. Szaraniec, E. Frackowiak, K. Szostak, and F. Beguin, "In Vitro Studies of Carbon Nanotubes Biocompatibility," Carbon, 44 [6] 1106-11 (2006) https://doi.org/10.1016/j.carbon.2005.11.022
  16. L. P. Zanello, B, Zhao, H. Hu, and R. C. Haddon, "Bone Cell Proliferation on Carbon Nanotubes," Nano Lett., 6 [3] 562-67 (2006) https://doi.org/10.1021/nl051861e
  17. K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, and A. Agarwal, "Plasma-Sprayed Carbon Nanotube Reinforced Hydroxyapatite Coatings and Their Interaction with Human Osteoblasts In Vitro," Biomaterials, 28 [4] 618-624 (2007) https://doi.org/10.1016/j.biomaterials.2006.09.013
  18. C. Kaya, I. Singh, and A. R. Boccaccini, "Multi-walled Carbon Nanotube-Reinforced Hydroxyapatite Layers of Ti6Al4V Medical Implants by Electrophoretic Deposition (EPD)," Adv. Eng. Mater., 10 [1-2] 131-38 (2008) https://doi.org/10.1002/adem.200700241
  19. L. Sun, C. C. Berndt, K. A. Gross, and A. Kucuk, "Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review," J. Biomed. Mater. Res., B58 570-92 (2001)
  20. B. D. Hahn, D. S. Park, J. J. Choi, W. H. Yoon, J. Ryu, and D. Y. Kim, "Effects of Zr/Ti Ratio and Post-Annealing Temperature on the Electrical Properties of PZT Thick Films Fabricated by Aerosol Deposition," J. Mater. Res., 23 226-35 (2008) https://doi.org/10.1557/jmr.2008.0021
  21. J. Ryu, D. S. Park, B. D. Hahn, J. J. Choi, W. H. Yoon, K. Y. Kim, and H. S. Yun, "Photocatalytic $TiO_2$ Thin Films by Aerosol-Deposition: From Micron-sized Particles to Nanograined Thin Film at Room Temperature," Appl. Catal., B 83 1-7 (2008) https://doi.org/10.1016/j.apcatb.2008.01.020
  22. M. S. P. Shaffer, X. Fan, and A. H. Windle, "Dispersion and Packing of Carbon Nanotubes," Carbon, 36 [11] 1603-12 (1998) https://doi.org/10.1016/S0008-6223(98)00130-4
  23. A. Wernnerberg, "The Importance of Surface Roughness for Implant Incorporation," Int. J. Mach. Tools Manuf., 38 657-62 (1998) https://doi.org/10.1016/S0890-6955(97)00114-4
  24. D. Buser, R. K. Schenk, S. Steinemann, J. P. Fiorellini, C. H. Fox, H. Stich, "Influence of Surface Characteristics on Bone Integration of Titanium Implants: A Histomorphometric Study in Miniature Pigs," J. Biomed. Mater. Res., 25 889-902 (1991) https://doi.org/10.1002/jbm.820250708
  25. B. D. Hahn, K. H. Ko, D. S. Park, J. J. Choi, W. H. Yoon, C. Park, and D. Y. Kim, "Effect of Post-Annealing on the Microstructure and Electrical Properties of PMN-PZT Films Prepared by Aerosol Deposition Process(in Korean)," J. Kor. Ceram. Soc., 43 106-13 (2006) https://doi.org/10.4191/KCERS.2006.43.2.106
  26. Y. Yang and J. L. Ong, "Bond Strength, Compositional, and Structural Properties of Hydroxyapatite Coating on Ti, $ZrO_2$-coated Ti, and TPS-coated Ti substrate," J. Biomed. Mater. Res.. 64A 509-16 (2003) https://doi.org/10.1002/jbm.a.10431
  27. A. Rabiei, B. Thomas, C. Jin, R. Narayan, J. Cuomo, Y. Yang, and J. L. Ong, "A Study on Functionally Graded HA Coatings Processed Using Ion Beam Assisted Deposition with In Situ Heat Treatment," Surf. Coat. Tech., 200 6111-116 (2006) https://doi.org/10.1016/j.surfcoat.2005.09.027
  28. Y. C. Yang, E. Chang, and S. Y. Lee, "Mechanical Properties and Young's Modulus of Plasma-Sprayed Hydroxyapatite Coating on Ti Substrate in Simulated Body Fluid," J. Biomed. Mater. Res., 67A 886-99 (2003) https://doi.org/10.1002/jbm.a.10145
  29. R. R. Kumar and M. Wang, "Modulus and Hardness Evaluations of Sintered Bioceramic Powders and Functionally Graded Bioactive Composites by Nano-indentation Technique," Mater. Sci. Eng., A338 230-36 (2002)