JINSUK BAEK et al.: A NEW HYBRID ARCHITECTURE FOR COOPERATIVE WEB CACHING 1

A New Hybrid Architecture for Cooperative Web
Caching

Jinsuk Baek,Gurpreet Kaur and Junghoon Yang

Abstract—An effective solution to the problems caused by the explosive growth of World Wide Web is a web caching
that employing an additional server, called proxy cache, between the clients and main server for caching the popular
web objects near the clients. However, a single proxy cache can easily become the bottleneck. Deploying groups of
cooperative caches provides scalability and robustness by eliminating the limitations caused by a single proxy cache.
Two common architectures to implement the cooperative caching are hierarchical and distributed caching systems.
Unfortunately, both architectures suffer from performance limitations. We propose an efficient hybrid caching architecture
eliminating these limitations by using both the hierarchical and same level caches. Our performance evaluation with our
investigated simulator shows that the proposed architecture offers the best of both existing architectures in terms of
cache hit rate, the number of query messages from clients, and response time.

Index Terms—Proxy cache, hierarchical architecture, distributed architecture, cooperative caching

1 INTRODUCTION

ITH the increasing popularity of the

WWW, web traffic has become one of
the most resource consuming applications on
the Internet. The reason behind that was
the growth of network traffic at a hyper-
exponential rate while network infrastructure
does not. This increasing use of the web results
in increased network bandwidth usage, strain-
ing the capacity of the networks on which it
runs. Hence, solutions to improve bandwidth
utilization of web traffic are currently an im-
portant issue. Different directions of research
are being investigated in this area, including
the use of compression and delta-encoding
[8], multicast, server-push and new congestion
avoidance algorithms [9].

Two most direct ways of reducing web traffic
have been implemented recently. On the one
hand, improvements have been made in the
Hypertext Transfer Protocol (HTTP). The inter-

e 601 M.L.King Jr Dr, Department of Computer Science, Winston-
Salem State University, Winston-Salem, NC 27110, USA.

This work was supported in part by the 2007 Winston-Salem State
University Research Initiation Program (WSSU-RIP 2007) under
Grant RIP-121203.

Manuscript received February 15, 2008; revised March 20, 2008.

action with the lower level protocol has been
modified in HTTP1.1 to support, in particular,
persistent connections and pipelining, in order
to increase network efficiency. On the other
hand, caching at different levels is proposed
and implemented: caching at the client side and
in the backbone network.

Indeed, according to statistical analysis,
some web servers and web documents are
much more popular than others. Hence, the
request stream exhibits some locality in several
clients, especially in the same area, by request-
ing the same files to the same server during
a relatively short time interval. A proxy cache
at the client side may therefore avoid super-
fluous downloads of such files and hence save
network bandwidth as well as server capacity.

In a proxy cache, a single host is used for one
to several hundred clients. Each client sends
its requests through the proxy which keeps
copies of objects in the cache. Hence, the in-
volvement of the proxy cache has decreased the
user perceived network latency. Proxy caches
are placed at different places in the network
to serve the clients. These proxy caches also
cooperate with one another in case of a cache
miss. If a requested web object from a client
is not found in a local proxy cache, the proxy

cache communicates with its sibling or nearby
proxy caches to find that object. In the event
that object is not found in the nearby caches
only then the request is forwarded to the origi-
nal server. This cooperation between the proxy
caches is called the cooperative caching.

There are many issues we should consider
to make a cooperative caching system works
properly. These issues include caching system
architecture, caching contents, proxy cache co-
operation, cache resolution and routing, pre-
fetching, cache placement and replacement,
and cache coherency. Among these, our focus
is on the caching architecture, one of the most
important issues of the cooperative caching
system, since it provides the paradigm for effi-
cient inter-cooperation between proxy caches.

Two common architectures to implement
large scale proxy cache cooperation are hierar-
chical and distributed caching systems. Hierar-
chical caching system basically works from the
lowest levels toward the highest levels. That
is, if a cache miss occurs at a given level of
cache, the request is forwarded to a higher level
cache. If the requested object is not found in
the higher level cache, the forwarding goes on
until the requested object is found. Although
this architecture introduces different levels of
cache to increase the overall cache hit rate, it
still has some flaws. One of the drawbacks
is that it can introduce an additional delay
whenever the request is not satisfied in a given
level of cache since the request is forwarded to
upper levels in hierarchy. Another drawback is
that the higher level cache can have a longer
queue than the lower level cache resulting in a
bottleneck.

In a distributed caching, each object is al-
lowed to be cached only at the lowest level and
a cache can obtain an object from the neighbor-
ing caches. It effectively tackles many of the
drawbacks of hierarchical caching. There are
several approaches including Internet Cache
Protocol (ICP) [13], Caching Array Routing
Protocol (CARP) [12], Summary cache [7], Hint
cache [10] and Home cache [14]. Unfortunately,
each of the schemes has its own limitation.
A comprehensive study [11] on both archi-
tectures found that hierarchical caching pro-
vides shorter connection time than distributed

JOURNAL OF UBIQUITOUS CONVERGENCE TECHNOLOGY, VOL.2, NO.1, MAY, 2008

caching while the latter provides shorter trans-
mission time and higher bandwidth usage.

In order to reduce limitations of the existing
solutions, we propose a more efficient hybrid
caching architecture using both the hierarchy of
caches as well as same level caches. Our hybrid
caching basically works as follows. Each cache
has multiple sibling caches and one upper level
cache to fetch the object. If a client requests a
web object to its nearest proxy cache, this cache
will firstly look for that object within itself. If
the object is not found then it will pass the
request to the next level proxy cache. Each level
of the proxy cache, except for the lowest level
of caches in the hierarchy, creates and main-
tains their reference tables. This reference table
includes some fields representing the location
of the proxy cache having the requested web
object. The location would be one of its child
proxy caches. This cache will now look for
that web object within itself, and if the object
is not present in the cache it will look in its
reference table to find the location of the object.
This table contains the information about the
contents of its lower level proxy caches. If the
table does not include any information about
where the requested web object is available in
its child proxy caches, then the request will be
forwarded to the original web server. Unlike
the hierarchical caching, each level of proxy
cache will update its reference table rather than
keeping the copy of the object.

The major advantages of the proposed ar-
chitecture are as follows. First, our new ap-
proach will overcome the problem with hi-
erarchy caching, because each level of proxy
caches keeps the information about the con-
tents of its lower level caches in their refer-
ence tables. Hence, it can resolve the problem
of long queuing delays and avoid the dupli-
cation of the object in intermediated caches.
Second, it outperforms the distributed caching
architecture, because the lowest level of cache
does not broadcast the request to all of its
sibling caches when the request is not satisfied
from within. Therefore, it can overcome the
problem of bandwidth consumption because
our approach will use the reference table to
find out the exact location of the proxy cache
having the requested web object. Finally, our

JINSUK BAEK ef al.: A NEW HYBRID ARCHITECTURE FOR COOPERATIVE WEB CACHING 3

approach scales well when it is applied to the
wide area network (WAN), because each level
of caches can handle more first level caches by
employing the reference table.

The outline of the rest of this paper is as fol-
lows. In Section 2, we summarized the existing
solutions. In Section 3, we describe our hybrid
caching architecture in more detail. We show
the performance of the proposed solution in
Section 4. We conclude this thesis and suggest
future work in Section 5.

2 RELATED WORK

In this Section, we discuss the existing archi-
tectures and their drawbacks. Two well known
existing architectures based on which we pro-
posed our architecture are hierarchical and dis-
tributed caching architectures. A hierarchical
caching [6] was first proposed in the Harvest
project [4]. In hierarchical caching architecture,
proxy caches exist in several network levels,
such as bottom, institutional, regional, and na-
tional level. The bottom level of the hierarchy
is the client/browser cache. When a request
is not satisfied by the client cache then it is
forwarded to the institutional level. The request
for the web object travels from the lower level
to the higher level ie. from institutional to
regional and then to national level. If the web
object is not found in all of the levels then the
request is forwarded to the original server. As
the web object travels down the hierarchy it
leaves a copy at each level. In the same way all
the requests travel up the hierarchy until they
are satisfied either by some level cache or by
the original server. A hierarchical architecture
is more bandwidth efficient in cases where
the cooperating caches do not have fast con-
nectivity. It also has shorter connection times
than distributed caching but there are some
problems associated with this architecture [3].

1) To set up the hierarchy, one needs to
find the key access points in the network,
so that a maximum coordination can be
maintained between the proxy caches;

2) The hierarchy of caches increases the
chances of the web object being found
in one of the levels but in case it is

not found, then each level introduces an
additional delay;

3) Sometimes long queues form at the
higher levels with that becomes a bottle-
neck effects on the performance of the ar-
chitecture. Sometimes intermediate levels
introduce the processing delays as well;
and

4) Saving multiple copies at each level of the
hierarchy wastes time as well as space.

To overcome the drawbacks of the hierarchi-
cal architecture, a new architecture, distributed
caching architecture, was introduced. This ar-
chitecture minimized the delays by taking out
the various levels. In this architecture, there
is no intermediate cache except for the lowest
level caches that were named as institutional
level. In order to find out which institutional
level has the requested web object, all the levels
keep the information about the content of the
other institutional level caches. To serve each
others misses, caches cooperate with each other
using different mechanisms. A query is gener-
ated by the lowest level and is broadcasted to
its neighboring caches to find out the requested
web object.

One strategy used in distributed cooperative
caching is Internet Cache Protocol (ICP) [13].
ICP is the only communication protocol that
does not impose any particular architecture of
caches. In this protocol, every sibling cache
as well as parent cache is explicitly queried
whether they have a particular web object or
not. And the sibling cache or parent cache
sends back reply message indicating HIT or
MISS. When a client requests a certain web
object, a query is being sent to clients default
proxy cache. If the object is not found in the
default cache, the request is forwarded to other
caches. Upon getting a HIT message from at
least one of the proxy caches, the requested
web object is transferred to the default proxy
cache. But the drawback for this protocol is
that querying every sibling cache increases the
workload as well as Internet traffic. As a re-
sult, ICP has a "negative scalability” in that
the more proxy caches added to the network,
the more querying required between servers to
determine location.

A more recent queryless distributed
caching approach has evolved known as
Caching Array Routing Protocol (CARP) [12].
CARP uses hash-based routing to provide
a deterministic “request resolution path”
through an array of proxy caches. For any
given request, the browser or downstream
proxy cache will know exactly where in the
proxy array the requested object will be stored,
whether it is already cached in any of the
proxy caches, or need to contact the original
server for information retrieval. Use of hash
function completely eliminates the duplication
of web objects and efficiently reduces the
Internet traffic. In addition, CARP has a
"positive scalability”. Due to its hash-based
routing, and hence, its freedom from peer-to-
peer pinging, CARP becomes faster and more
efficient as more proxy caches are added. But
the drawback for this protocol is that it works
well only for Local Area Network (LAN).
Therefore, only a fraction of web objects is
stored in a cache, which facilitates only the
local hit ratio. Moreover, it is not clear how
well it performs for wide area cache sharing.

Summary cache [7] has been proposed to
reduce bandwidth consumption. In summary
cache, each proxy cache keeps the summary of
the cache directory of each participating proxy,
and checks these summaries for potential hit
before sending any request to the original
server. Summaries in the caches are updated
timely and directory representation uses 8 bits
per entry that is also very economical. When-
ever an object is not found in the local proxy
cache, then the local proxy cache will look into
the summary to find out if it is a hit in some
other proxy caches. If some other proxy caches
have this requested object then the local proxy
cache will send query to those particular proxy
caches. However, the summary is not accurate
all the times. Hence, in case the summary is not
updated, the penalty will be a wasted query
message while in case the summary does not
reflect any information about an object that is
cached in some other proxy caches, the penalty
is higher miss ratio. Unfortunately, this tech-
nique introduces some storage overheads.

A Hint cache [10] contains a hint field
{objectID, nodelD} pair where nodelD iden-

JOURNAL OF UBIQUITOUS CONVERGENCE TECHNOLOGY, VOL.2, NO.1, MAY, 2008

tifies the closest cache that contains the copy
of objectID. That is, a hint cache knows where
the closest copy of the requested object in a
cluster of hint caches is. If an object is not
in the local cache, it looks in its hint cache.
If any other cache in the cluster has a copy
of the requested object, it goes to the closest
place. Otherwise, the query message is passed
directly to the original server without going
through siblings or parent cache. Once the
cache has its own copy, it advertises that fact
to the all caches in the same cluster. This cross-
cache access can be very efficient in terms of
cache performance. But the drawback for this
technique is that it is complicate to imple-
ment and cause message overhead because the
hints should be propagated through the entire
cluster whenever there are cache misses. Even
though hint cache adopts a notion of version
through last-modified time and always goes for
the most recent know version, it still contains
an out of date picture of where the objects are
cached especially when the cache content have
to be replaced with other objects.

According to the Home cache [14], proxy
caches can store any object locally in home
but there is also a designated home cache for
every object. In case of local miss, the cache
only checks the home cache for the object. It
uses the same concept of hashing function as
CARP to associate home caches with the URL,
but it can store other objects too. Generally,
popular objects are replicated at all the caches
but the less popular and large objects are stored
only on the home cache. While it is found to
be efficient, we need to point out that a) each
proxy cache has to perform the hash function
whenever the object is not found; and b) it is
not applicable to the wide area network as the
proposed solution will.

3 PROPOSED HYBRID SOLUTION

In this Section, we describe a new hybrid
caching architecture that can take advantage of
both hierarchical and distributed caching. As
shown in Fig. 1, we assume there are two-level
hierarchies of caches and each level consists of
more than one cache. Therefore, when a client
requests a web object to its nearest proxy cache,

JINSUK BAEK ef al.: A NEW HYBRID ARCHITECTURE FOR COOPERATIVE WEB CACHING 5

this proxy cache will try to find out whether it
has that requested object or not. If the proxy
cache does not have that object, then it will
forward the request to the proxy cache that
is at the next level of the hierarchy. This next
level proxy cache will now look for that object
within itself, and if the object is not found then
that proxy cache will try to locate the object
by searching it in the reference table it has
maintained. Each level in the hierarchy except
the lowest level maintains the reference table.
This reference table contains the different fields
specifying the location of the web objects. Two
of the major fields are {Proxy ID} and {Object
ID}. {Proxy ID} field represents the location of
the web object while {Object ID} represents the
web object itself. This reference table eventually
contains a {Proxy ID} with respect to every
{Object ID}. The description of various fields
in the reference table is as follows:

s {Object ID}: A unique ID for all the web
objects cached at the lower level proxy
cache.

« {Proxy ID}: Specifies the proxy cache
where a particular object is cached.

o {Date Created}: Specifies the exact date
and time when an object is cached on the
proxy cache from the original server.

» {Date Modified}: Specifies the recent date
when that object is accessed.

Therefore, the second level proxy cache tries
to locate the missed web objects using this
reference table. However in case the reference
table does not have any information about
the requested web object, then the request is
forwarded to the highest level in the hierarchy
that is the original server in our example. When
the requested object is retrieved from the origi-
nal server, then the reference table of each level
proxy cache gets updated down the hierarchy.

We need to clarify that a copy of the web
object is not stored in any of the intermediate
proxy caches as with traditional hierarchy ar-
chitecture. Hence, our approach will overcome
the problem of duplication of objects with the
hierarchy architecture. In addition, in order to
keep the freshness of the reference table, the
reference of every web object that travels down
the hierarchy from the original server is up-

dated. In this way we can implement our new
approach to a LAN. As WAN is a large network
that consists of more than one LAN, we can
introduce one more proxy cache located in next
level hierarchy. This proxy cache will maintain
one reference table to trace the requested web
objects from the several LANs.

In our approach, when a new object travels
down from the original server to the lowest
level proxy cache on behalf of the client, the
index of the object is stored at the upper level
proxy cache. Hence, False Misses are not in-
troduced, because the reference table keeps an
up to date picture of what has been cached
in the lowest level proxy caches. However,
False Hits are possible especially when the
lowest level proxy caches discard the object
using a cache replacement policy in case the
cache is full. The most straightforward method
would be for each lowest level proxy cache
to inform its upper level proxy whenever it
discards a web object. However, in this case,
the number of message exchanged between
the proxy caches and the upper level proxy
cache highly depends on the cache sizes of the
lowest proxy caches. Another solution would
be if the lowest level is full, the lowest level
cache delivers the object to the upper level
proxy before discarding that object. But, this
also depends on the cache size of the upper
layer proxy.

Our solution to avoid the False Hits is for
every proxy cache to keep an object with a flag
bit. This flag bit is initially set to 1. A proxy
cache can discard an object without informing
its upper level proxy cache and can set this flag
bit to 0. The upper level proxy cache always
maintains {Proxy ID} which is the most recent
proxy cache associated with {Object ID}.

Let us assume a proxy cache P; has an object
O, whose flag bit is set to 1 and another proxy
cache P, requests that object O;. When the
proxy cache P, sends a request to the upper
level proxy cache, the upper level proxy cache
will refer to its reference table to find out the
location of the object Oy and will forward that
request to the proxy cache P,. The proxy cache
P, will now get a copy of the object O,, and set
its flag bit to 1. Based on this information, the
upper level proxy cache updates its reference

Original server

JOURNAL OF UBIQUITOUS CONVERGENCE TECHNOLOGY, VOL.2, NO.1, MAY, 2008

C}Le)caizreamwk

2™ level proxy

1% level proxy caches

5 £y % B

Client Clisnt Chisnt Chent

3 Y

Client Client Client Client

Fig. 1. Example of the hybrid architecture for a LAN

table reflecting that P is the more recent proxy
cache keeping the object O; than P;. This will
prompt the upper level proxy cache to update
its reference table. Therefore this flag bit helps
the upper level proxy cache to keep its refer-
ence table updated.

On the other hand, proxy cache P, will set its
flag bit to 0. It can now discard the object O,
because the reference table has been updated so
it has no information about object O; cached in
proxy cache P,. By discarding the web object,
duplications can be removed efficiently which
usually happens when one proxy cache gets
a web object from another proxy cache on
same level after referring to the reference table.
The reference table gets updated as the object
travels from one proxy cache to another.

However, after observing the users’ access
pattern, we have noticed that the possibility of
requesting same object by some of the clients
under the same proxy cache is very high. In
that case the client has to send a request to a
lower level proxy cache (P; in our example)
for the same object, and P; will have to contact
another proxy cache (F in our example) after
contacting the upper level proxy cache to get

the same object that was just discarded from
its local proxy cache P;. This simply increases
the network traffic in between the lower level
proxy and the upper level. It also introduces
unnecessary delay in terms of response time.

If we keep the object even after it has been
referenced by another proxy cache, there is
wastage of space caused by duplicated objects
over the some proxy caches in the same level.
This penalty, however, can be compensated by
the reduced network traffic and response time.
The most promising solution is to find a way
to decide when the object can be discarded
without introducing a significant penalty. This
can be done by analyzing how many objects
are accessed again from the clients under the
same lowest level proxy.

4 PERFORMANCE

To evaluate the performance of our proposed
approach, we have developed a trace driven
simulation program. This program simulates
the various levels cache environments handling
the requests generated by the clients at the
lower level. It also simulates how the requests
are forwarded from the lower level proxy

JINSUK BAEK er al.: A NEW HYBRID ARCHITECTURE FOR COOPERATIVE WEB CACHING 7

caches up to the original web server when
a cache miss occurs at these levels of proxy
caches. The results of the simulation show how
the hit rate and the response time changes
with the size of the proxy caches as well as
the number of the lowest level proxy caches.
All the simulation results are based on a real
log from the National Laboratory for Applied
Networking Research (NLANR) [15] that has
approximately 2.5 million requests.

In the simulation, the clients are assigned to
various proxy caches depending upon their IP
addresses. Hence, all the clients having a par-
ticular network address will correspond to the
same first level proxy cache. The average round
trip time changes depending upon whether it
is a first level proxy hit or a upper level proxy
hit. The various fields considered in the web
logs are the input parameters to our simulation
program. By varying the parameter settings
and values we can simulate and compare the
performance of our architecture with the other
architectures that use different protocols. As
our architecture is using a reference table for
keeping a reference to the various web objects,
the change in the size of the reference table will
affect the performance of our scheme.

From the traces, we get the average time for
a local hit. Based on that time, we calculate
two average times that will be used for our
simulation. A, is the average total elapsed time
in the case of a cache miss in the trace. T}
is the average round trip time between the
proxy cache and the original web server while
Ty is the average round trip time between the
client and the proxy cache. 4, is derived by the
formula

A1:T1+T2—>

1
——>T1:A1*—A2. ()

Hence, we can use 7} whenever there is both
a lower level cache and a reference table miss.
We define A; as the average total elapsed time
between the client and the lower level proxy
cache in case where a cache hit occurs in the
trace. It will be evaluated by the formula

Ay =T 2)

We will be using this time A, whenever there
is a lower level cache hit. We now show how
we can efficiently approximate our response
time using the response time in the real trace.
Let us define

+ DB, as the event that lower level proxy hit
occurs.

« P, as the event that lower level proxy miss
occurs.

e UP, as the upper level proxy hit.

« UPF,, as the upper level proxy miss.

« PT, as the proxy hit in the trace. .

« PT,, as the proxy miss in the trace. .

« R as the response time in our architecture.

» Ry as the response time in the trace. .

« RTT(P;, P;)is the round trip time between
any two proxy caches in the group. .

o« RTT(P,UP) is the round trip time be-
tween a proxy cache and its upper level
Proxy.

In reference to these definitions, we can cal-

culate the response time based on the following
six possible cases:

Case 1: If (P, & UPF,,) & P1,,)
R = RT
Case 2: If (P, & UP,) & PT,,)
R =RIT (P, P;) + RTT (P, UP)x Ay
Case 3: If (P, & UP,,) & PT})
R = RT + Tl
Case 4: If (P, & UPF,) & P1T})
R =RIT (P, P;)) + RTT (P, UP) +
+ RT
Case 5: If (P, & PT,,)
R = AQ
Case 6: If (P, & PT))
R = RT

After getting the response time for our ap-
proach, we now will be calculating the re-
sponse time for ICP and then we will compare
the results for both the approaches.

In the figure above we have 6 proxy caches
and the upper level proxy cache is in the
center of all the proxy caches. As we can see,
all the proxy caches are connected using the
star topology. Using a real trace, we evalu-
ated the actual average round trip time which
equals 282ms between the clients and lower
level proxy cache. Based on this time, we have

Fig. 2. Star network topology for evaluating
response time for ICP

approximately calculated the response time be-
tween various proxy caches. We assume the
propagation delay between the proxy caches is
at least five times longer than that of between
the proxy cache and the client. Using all that
data, we calculate the round trip time between
the neighboring caches and hence the average
response time for the ICP protocol. In addition
to the parameters defined for our approach, we
define the following parameters.

o G is the group hit.

o G, is the group miss.

e Maz(P;) is the maximum wait time for the

response for proxy cache i.

Hence, proxy cache i has to wait Maz(P)
time before requesting the object to the origi-
nal server. Now we have six to calculate the
response time for ICP.

Case 1: If (P, & Gr,) & PT,,)

R = Ry + Max(P,)

Case 2: If (P, & G,,) & PT})

R=Rr + Maz(F) + T
Case 3: If (P, & G}) & PT,,)

R = Ay + RTT (P, P))
Case 4: If ((Pm & Gh) & PTh)

R = Ry + RTT (P, P))
Case 5: If (Ph & PTh)

R = RT
Case 6: If (P, & PT,,)
R = A2

In order to find out the whether the re-
quested object is present in the group or not,
we will be using the reference table. We could
get the real values for 77 (= 897 ms), T (=

JOURNAL OF UBIQUITOUS CONVERGENCE TECHNOLOGY, VOL.2, NO.1, MAY, 2008

TABLE 1
Results of the local hit rate with varying cache
sizes
Proxy Cache Size of proxy cache in KB
20 30 0 50 €0
2 365 | 426 | 497 | 539 | 584
P 386 | 496 | 591 | 667 | 7.24
Ps 245 | 333 | 400 | 456 | 512
P2 276 | 369 | 439 | 524 | 5.79
Ps 2649 | 31.05 | 33.56 | 34.88 | 37.80
P 327 | 377 | 458 | 473 | 511

282 ms), and A; (= 1179 ms) from the real
trace. These values are plugged into the above
formulas. We now show the results for our
simulation and compare the results with the
ICP. Depending upon the data we have, we
calculated the local hit rate for our approach.
Local hit rate means how many requested ob-
jects are available in the local proxy cache of
the client. The results are given in Table 1.

The results for the local hit rate show that
the hit rate increases as the cache size increases.
As we can see, our approach works well in all
the cases owing to our well defined reference
table, but in case of ICP if we decrease the
cache size the local hit rate will significantly
decreases. Hence our approach fares well in
case of small cache sizes. However, we need to
mention that both approaches eventually show
the same global hit rate in all different cache
sizes.

When we compare the results for global
cache hit rate within the group, we find out
that the global hit rate is almost same for
both the approaches. However, as we will see,
our approach outperforms ICP in terms of re-
sponse time and the number of query messages
generated by each proxy cache. By using the
formulas we described earlier, we compare the
response time for both approaches and the
following graphs are showing the results. As
we can see, proxy cache 1 and 6 has 21 and 12
clients respectively and the response time for
ICP is either same or more than the response
time for our approach, because in case of ICP,
each proxy cache i has to wait at least Maz(P))
time before requesting the object to the original
server.

We now compare the number of query mes-

JINSUK BAEK ef al.: A NEW HYBRID ARCHITECTURE FOR COOPERATIVE WEB CACHING

5000
4500 1 —&—Hybrid
4000 ~|CP
& 3500
£ 3000
2
é 2500
o 2000
]
§ 1500
2 1000 4
4
300 4
0 4
1234567 8 3101112131415161718192021
Chient1D}
Fig. 3. Response times for the Proxy Cache 1
4500 4
4000 { —o—Hybiid
3500 = LF
£ 3000 |
£ 2500 4
2000 1
2 1500
g 1000
= 500
o ———r
12 3 4 5 6 7 B 3 @011 R
ClientID

Fig. 4. Response times for the Proxy Cache 6

sages generated in both the approaches. The
following table represents that the numbers of
query messages generated in ICP are almost 3
times more than the number of query messages
generated in the proposed approach.

We need to clarify it is very difficult to
numerically compare the proposed solution to
the Hint cache or Home cache because they
should be implemented under quite heteroge-
neous architecture. However, we can techni-
cally compare our solution to the Hint cache.
As we described in Section 2, Hint cache con-
tains the hint field {objectID, nodelD} pair
where nodelD identifies the closest cache that
contains the copy of objectID. But when com-
pared to our approach this protocol also suf-
fers the same drawback as Summary cache.
The Hint cache also suffers implementation

complications and may sometimes contain an
out of date picture of where the objects are
cached thereby simply resulting in cache miss.
Finally, we compare our new approach with
the Home cache. Home cache is the latest and
the most efficient approach of all the current
protocols. In this protocol every web object has
a designated home cache. If an object is not in
the local cache, it will definitely be in the home
cache. This protocol also uses the hashing tech-
nique to associate every object with its home
cache. But in comparison to our hybrid caching,
this protocol introduces some timing delays
whenever the hashing technique is applied,
and moreover this protocol does not perform
as well in WAN as our new architecture.

5 CONCLUSION AND FUTURE WORK

We proposed a new hybrid architecture for
cooperative caching that efficiently overcomes
the limitations of existing caching architectures.
As our approach inherits the distributed and
hierarchical architecture, it has reduced query-
ing overhead in comparison to ICP, and elim-
inated the duplicity in comparison to CARP.
Our approach also overcomes the design com-
plexities of Summary Cache and Home Cache
by employing the reference table.

As the performance of our protocol strongly
depends on the cache size, reference table size,
and replacement policy, we need more sim-
ulation to evaluate the performance of our
protocol using various cache and reference
table sizes. As a future work, we will also
observe the performance with various replace-
ment policies including FIFO, LRU, Greedy-
Dual size, NFU, and OPT. Finally, we will
compare the results with these from different
protocols. In addition, in order to optimize on
when the object can be discarded from the
proxy cache after it is accessed by different
proxy caches, we will analyze object access
pattern using FI prediction algorithm [5] and
how many objects are re-accessed at what in-
tervals. We will also show how our solution can
be efficiently extended to WAN environments.
In addition, the location of each proxy server
in our architecture needs to be strategically
positioned for reliable multicast services [1],

[2].

10 JOURNAL OF UBIQUITOUS CONVERGENCE TECHNOLOGY, VOL.2, NO.1, MAY, 2008
TABLE 2
Total number of query messages generated for both approaches
Proxy Cache Number of misses for different cache size in KB
(The number of messages)
20 30 40 50 60
P, (5248) 5056 5024 4987 4965 4942
P (3208) 3084 3049 3018 2994 2976
Ps (2193) 2139 2120 2105 2093 2081
Py (4707) 4577 4533 4500 4460 4434
Ps (3746) 2754 2583 2489 2439 2330
P (9681) 9364 9316 9238 9223 9186
Sum of Misses 26975 26625 26338 26175 25949
of queries in ICP 161850 | 159752 | 158026 | 157049 155692
of queries in Hybrid 53950 53250 52675 52349 51897
ACKNOWLEDGMENTS [11] J. Wang, A survey of web caching schemes for the Internet,

This work was supported in part by the 2007
Winston-Salem State University Research Initi-
ation Program (WSSU-RIP 2007) under Grant
RIP-121203.

REFERENCES

f1] J. Baek and M. Kanampiu, A NAK suppression scheme for
group communications considering the spatial locality of packet
losses, International Journal of Computer Science and Net-
work Security, vol. 6, no. 10, pp. 158-167, October 2006.
J. Baek and]. F. Paris, A heuristic buffer management and
retransmission control scheme for tree-based veliable multicast,
ETRI Journal, vol. 27, no. 1, pp. 1-12, February 2005.
G. Barish and K. Obraczka, World Wide Web caching: Trends
and techniques, IEEE Communications Magazine, vol. 38,
no. 5, pp. 178-185, May 2000.
C. Bowman, P. Danzig, D. Hardy, U. Manber, and M.
Schwartz, The Harvest information discovery and access sys-
tem, Computer Networks and ISDN Systems, vol. 28, no.
1-2, pp. 119-125, December 1995.
J. H. Case and P. S. Fisher, Long term memory modules,
Bulletin of Mathematical Biology, vol. 46, no. 2, pp. 295-
326, March 1984.
A. Chankhunthod, P. B. Danzig, C. Neerdaels, M.
ESchwartz, and K. J. Worrel, A hierarchical Internet object
cache, Proceedings of the USENIX Annual Technical Con-
ference, pp. 153-164, January 1996.
L. Fan, . Cao, J. Almeida, and A. Broder, Summary cache:
A scalable wide-area web cache sharing protocol, IEEE/ACM
Transactions on Networking, vol. 8, no. 3, pp. 281-293, June
2000.
J. C. Mogul, E Douglis, A. Feldmann, and B. Krishna-
murthy, Potential benefits of delta-encoding and data compres-
sion for http, Proceedings of the ACM SIGCOMM, pp. 181-
193, July 1997.
N. Niclausse, Z. Liu, and P. Nain, A new efficient caching
policy for the World Wide Web, Proceedings of the Workshop
on Internet Server Performance, pp. 119-128, June 1998.
[10] R. Tewari, M. Dahlin, H. Vin, and]. Kay, Design considera-
tions for distributed caching on the internet, Proceedings of the
19th International Conference on Distributed Computing
Systems, pp. 273-284, May 1999.

(5]

[6]

(7]

[9]

ACM Computer Communications Review, vol. 29, no. 5,
pp- 36-46, October 1999.

[12] V. Valloppillil and K. Ross, Cache array routing protocol v1.0,
Internet Draft, February 1998.

[13] D. Wessels, and K. Claffy, ICP and the squid web cache, IEEE
Journal on Selected Areas in Communication, vol. 16, no.
3, pp. 345-357, April 1998.

[14] M. Zu and J. Subhlok, Home Based Cooperative Web Caching,
Proceedings of the Seventh Multi-Conference on SCI, July
2003.

[15] National lab of applied network research,
http:/ /ircache.nlanr.net/. {Accessed January 2006).

Jinsuk Baek is Assistant Professor of
Computer Science at the Winston-Salem
State University (WSSU), Winston-Salem,
NC. He is the director of Network Protocols
Group at the WSSU. He received his B.S.
and M.S. degrees in Computer Science
and Engineering from Hankuk University of
Foreign Studies (HUFS), Korea, in 1996
and 1998, respectively and his Ph.D. in
Computer Science from the University of Houston (UH) in
2004. Dr. Baek was a post doctorate research associate of the
Distributed Multimedia Research Group at the UH. He acted
as a consulting expert on behalf of Apple Computer, Inc in
connection with Rong and Gabello Law Firm which serves
as legal counsel to Apple computer. His research interests
include scalable reliable multicast protocols, mobile computing,
network security protocols, proxy caching systems, and formal
verification of communication protocots. He is a member of the
IEEE.

Gurpreet Kaur was born in Punjab, In-
dia. She did her B.T. degree in Computer
Science and Engineering from the Guru
Nanak Dev Engineering College, India, in
2004. She was an international student
at the Winston Salem State University
(WSSU) and finished her M.S. degree in
Computer Science in 2007. She is currently
working as Software Consultant in Florida,
USA. Her areas of concentration are computer networks, and
data-warehousing.

JINSUK BAEK et al.: A NEW HYBRID ARCHITECTURE FOR COOPERATIVE WEB CACHING

Junghoon Yang was born in Seoul,
South Korea. He was an exchange stu-
dent at the Winston-Salem State Univer-
sity (WSSU) through the 7+1 program con-
ducted by Hankuk University of Foreign
Studies (HUFS). He worked as a software
developer at the Interweb Software Inc., a
system integration company in the area of
e-procurement, for three and a half years.
He was a member of the Intelligent Information Systems Group
at the WSSU and received his B.E. degree in Computer Science
and Engineering from the HUFS in 2008. He is currently working
as a staff at the KPMG Korea. His areas of concentration
are computer networks, network security, and programming
languages.

11

