Photocurrent study on the splitting of the valence band and growth of $ZnIn_{2}Se_{4}$ single crystal thin film by hot wall epitaxy

Hot wall epitaxy(HWE)법에 의한 $ZnIn_{2}Se_{4}$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구

  • Published : 2008.10.31

Abstract

A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41\times10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.8622eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnIn_2Se_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnIn_2Se_4/GaAs$ epilayer. The three photo current peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-exciton$ for n = 1 and $C_{27}-exciton$ peaks for n = 27.

수평 전기로에서 $ZnIn_2Se_4$ 단결정을 합성하여 HWE(Hot Wall Epitaxy)방법으로 $ZnIn_2Se_4$ 단결정 박막을 반절연성 GaAs(100) 기판에 성장시켰다. $ZnIn_2Se_4$ 단결정 박막의 성장 조건을 증발원의 온도 $630^{\circ}C$, 기판의 온도 $400^{\circ}C$였고 성장 속도는 0.5 $\mu m/hr$였다. $ZnIn_2Se_4$ 단결정 박막의 결정성의 조사에서 10K에서 광발광(photoluminescence) 스펙트럼이 682.7nm ($1.816{\underline{1}}eV$)에서 exciton emission 스펙트럼이 가장 강하게 나타났으며, 또한 이중결정 X-선 요통곡선(DCRC)의 반폭치(FWHM)도 128 arcsec로 가장 작아 최적 성장 조건임을 알 수 있었다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농노와 이동도는 293 K에서 각각 $9.41\times10^{16}/cm^{-3}$, $292cm^2/V{\cdot}s$였다. $ZnIn_2Se_4$/SI(Semi-Insulated) GaAs(100) 단결정 박막의 광흡수와 광전류 spectra를 293 K에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g(T)$는 varshni공식에 따라 계산한 결과 $E_g(T)=1.8622\;eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$ 이었으며 광전류 스펙트럼으로부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting energy ${\Delta}cr$값이 182.7meV이며 spin-orbit energy ${\Delta} so$값은 42.6meV임을 확인하였다. 10 K일 때 광전류 봉우리들은 n= 1, 27일때 $A_{1}-$, $B_{1}-$$C_{27}-exciton$ 봉우리임을 알았다.

Keywords

References

  1. A. Elifer, J.D. Hecht, G. Lippold and V. Kramer, "Combined infrared and ramman study of the optical phonons of defect chalcopyrite single crystals" Physica B 263/264 (1999) 806 https://doi.org/10.1016/S0921-4526(98)01292-7
  2. G. Jimmie, Edwards, Pannee Buckel and P. Jan Norwisz, "Effusion reactions in the $ZnSe-ZnIn_2Se_4$", Thermochimica Acta 340/341 (1999) 323 https://doi.org/10.1016/S0040-6031(99)00279-8
  3. S.P. Yadav, P.S. Shinde, K.Y. Rajpure and C.H. Bhosale, "Preparation and properties of spray deposited ZnIn2Se4 nanocrystalline thin films", J. Phys. and Chem. of Thin Solids 631(2005) 1667
  4. S.P. Yadav, P.S. Shinde, K.Y. Rajpure and C.H. Bhosale, "Photoelectrochemical properties of spray deposited $n-ZnIn_2Se_4$ thin film", Solar Energy Materials & Solar Cells 92 (2008) 453 https://doi.org/10.1016/j.solmat.2007.10.008
  5. J. Filipowicz, N. Romeo and L. Tarricone, "Influence of Y-irradiation on the optical and Electrical Properties of $ZnIn_2Se_4$ films", Radiat. Phys. Chem. 50(2) (1999) 175 https://doi.org/10.1016/S0969-806X(97)00006-6
  6. A.A. Vaipolin, Yu.A. Nikolaev, V. Yu. Rud and E.I. Terukov, "Radiative recombination in $ZnIn_2Se_4$", Semiconductors 37(2003) 432
  7. T.A. Hendia and L.I. Soliman, "Optical absorption behavior of evaporated $ZnIn_2Se_4$ thin films", Thin Solid Films 261 (1955) 322 https://doi.org/10.1016/S0040-6090(94)06488-1
  8. K.J. Hong, T.S. Jeong and S.H. You, "Structural and optical of $CuGaSe_2$ layers grown by hot wall epitaxy", J. Crystal Growth 310 (2008) 2717 https://doi.org/10.1016/j.jcrysgro.2008.02.011
  9. P. Korczak and C.B. Staff, "Heterojunction formation in (Cd,Zn)S/$ZnIn_2Se_4$ ternary solar cells", J. Crystal Growth 24/25 (1974) 386 https://doi.org/10.1016/0022-0248(74)90342-X
  10. B.D. Cullity, "Elements of X-ray diffractions" Caddson- Wesley, chap.11 (1985)
  11. H.P. Trah and V. Kramer, "Analysis of the electrical and luminescent properties of $ZnIn_2S_4$", Zeitschr. Kristallogr. 173 (1985) 199 https://doi.org/10.1524/zkri.1985.173.3-4.199
  12. H. Fujita, "Electron radition damage in Cadium- Selenide crystal at liquid-helium temperrature", J. Phys. Soc. 20 (1965) 109 https://doi.org/10.1143/JPSJ.20.109
  13. Y.P. Varshni, "Far-infrared optical absorption of $Fe^{2+}$ in ZnSe", Physica. 34 (1967) 149 https://doi.org/10.1016/0031-8914(67)90062-6
  14. J.L. Shay and J.H. Wernick, "Ternary Chalcopyrite Semiconductor: Growth, Electronic Properties and Applications" (chap. 3, chap. 4, Pergamon Press, 1975)
  15. J. Hopfield, "$ZnIn_2Se_4$/CdS heterojunction photovoltaic detectors", J. Phys. Chem. Solids 15 (1960) 97 https://doi.org/10.1016/0022-3697(60)90105-0
  16. J.L. Shay, B. Tell, L.M. Schiavone, H.M. Kasper and F. Thiel, "Analysis of the electrical and luminescent properties of $ZnIn_2Se_4$", Phys. Rev. 9(4) (1974) 1719 https://doi.org/10.1103/PhysRevB.9.1719
  17. J.L. Birman, "Luminescence and impurity states in $ZnIn_2Se_4$", Phys. Rev. Lett. 2 (1959) 159 https://doi.org/10.1103/PhysRevLett.2.159
  18. M.L. Glasser, "Polycrystalline $ZnIn_2Se_4$ photoelectrochemical cells", J. Phys. Chem. Solids 10 (1959) 229 https://doi.org/10.1016/0022-3697(59)90080-0
  19. K. Cho, Excitons, Topics in Current Physics, Vol. 14, (Springer-Verlag, Berlin, 1979), P. 18