DOI QR코드

DOI QR Code

Message in a Bottle: Chemical Biology of Induced Disease Resistance in Plants

  • Schreiber, Karl (Department of Cell & Systems Biology, University of Toronto) ;
  • Desveaux, Darrell (Department of Cell & Systems Biology, University of Toronto)
  • Published : 2008.09.30

Abstract

The outcome of plant-pathogen interactions is influenced significantly by endogenous small molecules that coordinate plant defence responses. There is currently tremendous scientific and commercial interest in identifying chemicals whose exogenous application activates plant defences and affords protection from pathogen infection. In this review, we provide a survey of compounds known to induce disease resistance in plants, with particular emphasis on how each compound was originally identified, its putative or demonstrated mechanism of defence induction, and the known biological target(s) of each chemical. Larger polymeric structures and peptides/proteins are also discussed in this context. The quest for novel defence-inducing molecules would be aided by the capability for high-throughput analysis of candidate compounds, and we describe some issues associated with the development of these types of screens. Subsequent characterization of hits can be a formidable challenge, especially in terms of identifying chemical targets in plant cells. A variety of powerful molecular tools are available for this characterization, not only to provide insight into methods of plant defence activation, but also to probe fundamental biological processes. Furthermore, these investigations can reveal molecules with significant commercial potential as crop protectants, although a number of factors must be considered for this potential to be realized. By highlighting recent progress in the application of chemical biology techniques for the modulation of plant-pathogen interactions, we provide some perspective on the exciting opportunities for future progress in this field of research.

Keywords

References

  1. Aballay, A. and Ausubel, F. M. 2002. Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr. Opin. Microbiol. 5:97-101 https://doi.org/10.1016/S1369-5274(02)00293-X
  2. Agrawal, G. K., Rakwal, R., Tamogami, S., Yonekura, M., Kubo, A. and Saji, H. 2002. Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol. Bioch. 40:1061-1069 https://doi.org/10.1016/S0981-9428(02)01471-7
  3. Ahl, P., Gianinazzi, S., Samson, R. and Benjama, A. 1985. Cultivar dependence of polyacrylic acid effects on Pseudomonas syringae in Nicotiana tabacum. Plant Pathol. 34:221-227 https://doi.org/10.1111/j.1365-3059.1985.tb01353.x
  4. Ahn, I. P., Kim, S. and Lee, Y. H. 2005. Vitamin $B_{1}$ functions as an activator of plant disease resistance. Plant Physiol. 138:1505-1515 https://doi.org/10.1104/pp.104.058693
  5. Ahn, I. P., Kim, S., Lee, Y. H. and Suh, S. C. 2007. Vitamin $B_1$ induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol. 143:838-848 https://doi.org/10.1104/pp.106.092627
  6. Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H. M., Shinn, P., Stevenson, D. K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C. C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D. E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W. L., Berry, C. C. and Ecker, J. R. 2003. Genome-wide Insertional mutagenesis of Arabidopsis thaliana. Science 301:653-657 https://doi.org/10.1126/science.1086391
  7. Amruthesh, K. N., Geetha, N. P., Jorgensen, H. J. L., de Neergaard, E. and Shetty, H. S. 2005. Unsaturated fatty acids from zoospores of Sclerospora graminicola induce resistance in pearl millet. Eur. J. Plant Pathol. 111:125-137 https://doi.org/10.1007/s10658-004-1590-9
  8. Applewhite, P. B., Ksawhney, R. and Galston, A. W. 1994. Isatin as an auxin source favoring floral and vegetative shoot regeneration from calli produced by thin-layer explants of tomato pedicel. Plant Growth Regul. 15:17-21 https://doi.org/10.1007/BF00024672
  9. Asselin, A., Grenier, J. and Cote, F. 1985. Light-influenced extracellular accumulation of b (pathogenesis-related) proteins in Nicotiana green tissue induced by various chemicals or prolonged floating on water. Can. J. Bot. 63:1276-1283 https://doi.org/10.1139/b85-177
  10. Aver'yanov, A. A., Lapikova, V. P., Nikolaev, O. N. and Stepanov, A. I. 2000. Active oxygen-associated control of rice blast disease by riboflavin and roseoflavin. Biochemistry-Moscow 65:1292-1298
  11. Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bezier, A., Lambert, B., Joubert, J. M. and Pugin, A. 2003. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol. Plant-Microbe Interact. 16:1118-1128 https://doi.org/10.1094/MPMI.2003.16.12.1118
  12. Aziz, A., Heyraud, A. and Lambert, B. 2004. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta 218:767-774 https://doi.org/10.1007/s00425-003-1153-x
  13. Aziz, A., Gauthier, A., Bezler, A., Poinssot, B., Joubert, J. M., Pugin, A., Heyraud, A. and Baillieul, F. 2007. Elicitor and resistance-inducing activities of $\beta$-1,4 cellodextrins in grapevine, comparison with $\beta$-1,3 glucans and $\alpha$-1,4 oligogalacturonides. J. Exp. Bot. 58:1463-1472 https://doi.org/10.1093/jxb/erm008
  14. Baillieul, F., de Ruffray, P. and Kauffmann, S. 2003. Molecular cloning and biological activity of $\alpha$-,$\beta$-, and $\gamma$-megaspermin, three elicitins secreted by Phytophthora megasperma H20. Plant Physiol. 131:155-166 https://doi.org/10.1104/pp.012658
  15. Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M. and Vivanco, J. M. 2003. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301:1377-1380 https://doi.org/10.1126/science.1083245
  16. Bantignies, B., Seguin, J., Muzac, I., Dedaldechamp, F., Gulick, P. and Ibrahim, R. 2000. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol. Biol. 42:871-881 https://doi.org/10.1023/A:1006475303115
  17. Barber, M. S., Bertram, R. E. and Ride, J. P. 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol. Mol. Plant Pathol. 34:3-12 https://doi.org/10.1016/0885-5765(89)90012-X
  18. Basse, C. W., Fath, A. and Boller, T. 1993. High affinity binding of glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J. Biol. Chem. 268:14724-14731
  19. Baureithel, K., Felix, G. and Boller, T. 1994. Specific, high-affinity binding of chitin fragments to tomato cells and membranes. J. Biol. Chem. 269:17931-17938
  20. Baurin, N., Baker, R., Richardson, C., Chen, I., Foloppe, N., Potter, A., Jordan, A., Roughley, S., Parratt, M., Greaney, P., Morley, D. and Hubbard, R. E. 2004. Drug-like annotation and duplicate analysis of a 23-supplier chemical database totalling 2.7 million compounds. J. Chem. Inf. Comp. Sci. 44:643-651 https://doi.org/10.1021/ci034260m
  21. Benhamou, N., Belanger, R. R., Rey, P. and Tirilly, Y. 2001. Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiol. Bioch. 39:681-696 https://doi.org/10.1016/S0981-9428(01)01283-9
  22. Bonnet, P., Bourdon, E., Ponchet, M., Blein, J. P. and Ricci, P. 1996. Acquired resistance triggered by elicitins in tobacco and other plants. Eur. J. Plant Pathol. 102:181-192 https://doi.org/10.1007/BF01877105
  23. Borges, A. A., Cools, H. J. and Lucas, J. A. 2003. Menadione sodium bisulphite: a novel plant defence activator which enhances local and systemic resistance to infection by Leptosphaeria maculans in oilseed rape. Plant Pathol. 52:429-436 https://doi.org/10.1046/j.1365-3059.2003.00877.x
  24. Borges, A. A., Borges-Perez, A. and Fernandez-Falcon, M. 2004. Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Prot. 23:1245-1247 https://doi.org/10.1016/j.cropro.2004.05.010
  25. Bostock, R. M., Kuc, J. A. and Laine, R. A. 1981. Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Science 212:67-69 https://doi.org/10.1126/science.212.4490.67
  26. Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F. and Dong, X. I. 1994. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6:1845-1857 https://doi.org/10.1105/tpc.6.12.1845
  27. Breger, J., Fuchs, B. B., Aperis, G., Moy, T. I., Ausubel, F. M. and Mylonakis, E. 2007. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PloS Pathogens 3:168-178 https://doi.org/10.1371/journal.ppat.0030168
  28. Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D. and Nurnberger, T. 2002. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J. 21:6681-6688 https://doi.org/10.1093/emboj/cdf667
  29. Buhot, N., Douliez, J. P., Jacquemard, A., Marion, D., Tran, V., Maume, B. F., Milat, M. L., Ponchet, M., Mikes, V., Kader, J. C. and Blein, J. P. 2001. A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett. 509:27-30 https://doi.org/10.1016/S0014-5793(01)03116-7
  30. Buhot, N., Gomes, E., Milat, M. L., Ponchet, M., Marion, D., Lequeu, J., Delrot, S., Coutos-Thevenot, P. and Blein, J. P. 2004. Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol. Biol. Cell 15:5047-5052 https://doi.org/10.1091/mbc.E04-07-0575
  31. Calabrese, E. J. and Baldwin, L. A. 2003. Hormesis: The doseresponse revolution. Annu. Rev. Pharmacol. Toxicol. 43:175-197 https://doi.org/10.1146/annurev.pharmtox.43.100901.140223
  32. Capasso, R., Cristinzio, G., Evidente, A., Visca, C., Ferranti, P., Blanco, F. D. and Parente, A. 1999. Elicitin 172 from an isolate of Phytophthora nicotianae pathogenic to tomato. Phy tochem. 50:703-709
  33. Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: Shaping the evolution of the plant immune response. Cell 124:803-814 https://doi.org/10.1016/j.cell.2006.02.008
  34. Chen, Z. X., Malamy, J., Henning, J., Conrath, U., Sanchezcasas, P., Silva, H., Ricigliano, J. and Klessig, D. F. 1995. Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc. Natl. Acad. Sci. USA 92:4134-4137 https://doi.org/10.1073/pnas.92.10.4134
  35. Cipollini, D. F. 2002. Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approach. Oecologia 131:514-520 https://doi.org/10.1007/s00442-002-0909-5
  36. Citovsky, V., Ghoshroy, S., Tsui, F. and Klessig, D. 1998. Nontoxic concentrations of cadmium inhibit systemic movement of turnip vein clearing virus by a salicylic acid-independent mechanism. Plant J. 16:13-20 https://doi.org/10.1046/j.1365-313x.1998.00263.x
  37. Cohen, Y., Gisi, U. and Mosinger, E. 1991. Systemic resistance of potato plants against Phytophthora infestans induced by unsaturated fatty acids. Physiol. Mol. Plant Pathol. 38:255-263 https://doi.org/10.1016/S0885-5765(05)80117-1
  38. Cohen, Y. R. 2002. $\beta$-aminobutyric acid-induced resistance against plant pathogens. Plant Dis. 86:448-457 https://doi.org/10.1094/PDIS.2002.86.5.448
  39. Conrath, U., Chen, Z. X., Ricigliano, J. R. and Klessig, D. F. 1995. Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. USA 92:7143-7147 https://doi.org/10.1073/pnas.92.16.7143
  40. Conrath, U., Beckers, G. J. M., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M. J., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: Getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071 https://doi.org/10.1094/MPMI-19-1062
  41. Daxberger, A., Nemak, A., Mithofer, A., Fliegmann, J., Ligterink, W., Hirt, H. and Ebel, J. 2007. Activation of members of a MAPK module in b-glucan elicitor-mediated non-host resistance of soybean. Planta 225:1559-1571 https://doi.org/10.1007/s00425-006-0442-6
  42. Declercq, E., Eckstein, F. and Merigan, T. C. 1970. Structural requirements for synthetic polyanions to act as interferon inducers. Ann. N.Y. Acad. Sci. 173:444-& https://doi.org/10.1111/j.1749-6632.1970.tb53434.x
  43. Deepak, S. A., Raj, S. N., Umemura, K., Kono, T. and Shetty, H. S. 2003. Cerebroside as an elicitor for induced resistance against the downy mildew pathogen in pearl millet. Ann. Appl. Biol. 143:169-173 https://doi.org/10.1111/j.1744-7348.2003.tb00283.x
  44. Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gutrella, M., Kessmann, H., Ward, E. and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266:1247-1250 https://doi.org/10.1126/science.266.5188.1247
  45. Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47:1530-1540 https://doi.org/10.1093/pcp/pcl019
  46. Diaz, J., ten Have, A. and van Kan, J. A. L. 2002. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol. 129:1341-1351 https://doi.org/10.1104/pp.001453
  47. Diogo, R. V. C. and Wydra, K. 2007. Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiol. Mol. Plant Pathol. 70:120-129 https://doi.org/10.1016/j.pmpp.2007.07.008
  48. Djonovic, S., Pozo, M. J., Dangott, L. J., Howell, C. R. and Kenerley, C. M. 2006. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol. Plant-Microbe Interact. 19:838-853 https://doi.org/10.1094/MPMI-19-0838
  49. Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801-811 https://doi.org/10.1094/PHYTO.2000.90.8.801
  50. Dong, H. S., Delaney, T. P., Bauer, D. W. and Beer, S. V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20:207-215 https://doi.org/10.1046/j.1365-313x.1999.00595.x
  51. Doubrava, N. S., Dean, R. A. and Kuc, J. 1988. Induction of systemic resistance to anthracnose caused by Colletotrichum lagenarium in cucumber by oxalate and extracts from spinach and rhubarb leaves. Physiol. Mol. Plant Pathol. 33:69-79 https://doi.org/10.1016/0885-5765(88)90044-6
  52. Douliez, J. P. 2004. Cutin and suberin monomers are membrane perturbants. J. Colloid Interface Sci. 271:507-510 https://doi.org/10.1016/j.jcis.2003.12.020
  53. Drennan, P. M., Smith, M. T., Goldsworthy, D. and Vanstaden, J. 1993. The occurrence of trehalose in the leaves of the desiccation tolerant angiosperm Myrothamnus flabellifolius Welw. J. Plant Physiol. 142:493-496 https://doi.org/10.1016/S0176-1617(11)81257-5
  54. Du, H. and Klessig, D. F. 1997. Identification of a soluble, highaffinity salicylic acid-binding protein in tobacco. Plant Physiol. 113:1319-1327 https://doi.org/10.1104/pp.113.4.1319
  55. Dumas, E., Gianinazzi, S. and Nicoud, S. 1985. A genetically controlled polyacrylic acid Induced resistance in Nicotiana species. Antiviral Res. 5:355-362 https://doi.org/10.1016/0166-3542(85)90005-1
  56. Durner, J. and Klessig, D. F. 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci. USA 92:11312-11316 https://doi.org/10.1073/pnas.92.24.11312
  57. Emmanouil, V. and Wood, R. K. S. 1981. Induction of resistance to Verticillium dahliae and synthesis of antifungal compounds in tomato, pepper and eggplant by injecting leaves with various substances. J. Phytopathol. 100:212-225 https://doi.org/10.1111/j.1439-0434.1981.tb03294.x
  58. Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91:11-17 https://doi.org/10.1073/pnas.91.1.11
  59. Faoro, F., Maffi, D., Cantu, D. and Iriti, M. 2008. Chemicalinduced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. Biocontrol 53:387-401 https://doi.org/10.1007/s10526-007-9091-3
  60. Fauteux, F., Chain, F., Belzile, F., Menzies, J. G. and Belanger, R. R. 2006. The protective role of silicon in the Arabidopsispowdery mildew pathosystem. Proc. Natl. Acad. Sci. USA 103:17554-17559 https://doi.org/10.1073/pnas.0606330103
  61. Felix, G., Duran, J. D., Volko, S. and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265-276 https://doi.org/10.1046/j.1365-313X.1999.00265.x
  62. Felix, G. and Boller, T. 2003. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem. 278:6201-6208 https://doi.org/10.1074/jbc.M209880200
  63. Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., Felix, G., Kemmerling, B., Krzymowska, M. and Nurnberger, T. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32:375-390 https://doi.org/10.1046/j.1365-313X.2002.01454.x
  64. Ferrari, S., Galletti, R., Denoux, C., De Lorenzo, G., Ausubel, F. M. and Dewdney, J. 2007. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 144:367-379 https://doi.org/10.1104/pp.107.095596
  65. Fliegmann, J., Mithofer, A., Wanner, G. and Ebel, J. 2004. An ancient enzyme domain hidden in the putative b-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem. 279:1132-1140 https://doi.org/10.1074/jbc.M308552200
  66. Flors, V., Miralles, C., Cerezo, M., Gonzalez-Bosch, C. and Garcia-Agustin, P. 2001. Effect of a novel chemical mixture on senescence processes and plant-fungus interaction in solanaceae plants. J. Agric. Food Chem. 49:2569-2575 https://doi.org/10.1021/jf000068y
  67. Flors, V., Miralles, C., Gonzalez-Bosch, C., Carda, M. and Garcia-Agustin, P. 2003a. Three novel synthetic amides of adipic acid protect Capsicum annuum plants against the necrotrophic pathogen Alternaria solani. Physiol. Mol. Plant Pathol. 63:151-158 https://doi.org/10.1016/j.pmpp.2003.10.007
  68. Flors, V., Miralles, M. C., Gonzalez-Bosch, C., Carda, M. and Garcia-Agustin, P. 2003b. Induction of protection against the necrotrophic pathogens Phytophthora citrophthora and Alternaria solani in Lycopersicon esculentum Mill. by a novel synthetic glycoside combined with amines. Planta 216:929-938
  69. Flors, V., Ton, J., van Doorn, R., Jakab, G., Garcia-Agustin, P. and Mauch-Mani, B. 2008. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54:81-92 https://doi.org/10.1111/j.1365-313X.2007.03397.x
  70. Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S. W., Chiang, Y., Acton, T. B., Montelione, G. T., Pichersky, E., Klessig, D. F. and Tong, L. 2005. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc. Natl. Acad. Sci. USA 102:1773-1778 https://doi.org/10.1073/pnas.0409227102
  71. Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. 1996. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 10:61-70 https://doi.org/10.1046/j.1365-313X.1996.10010061.x
  72. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754-756 https://doi.org/10.1126/science.261.5122.754
  73. Gaulin, E., Drame, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-Torregrosa, C., Khatib, M., Mazarguil, H., Villalba-Mateos, F., Kamoun, S., Mazars, C., Dumas, B., Bottin, A., Esquerre-Tugaye, M. T. and Rickauer, M. 2006. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18:1766-1777 https://doi.org/10.1105/tpc.105.038687
  74. Gaunt, R. E. 1995. The relationship between plant disease severity and yield. Annu. Rev. Phytopathol. 33:119-144 https://doi.org/10.1146/annurev.py.33.090195.001003
  75. Geissler, A. E. and Katekar, G. F. 1983. Effect of fungicides on stages of the life cycle of Phytophthora cinnamomi. Pest. Sci. 14:501-507 https://doi.org/10.1002/ps.2780140507
  76. Ghoshroy, S., Freedman, K., Lartey, R. and Citovsky, V. 1998. Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J. 13:591-602 https://doi.org/10.1046/j.1365-313X.1998.00061.x
  77. Giaever, G., Shoemaker, D. D., Jones, T. W., Liang, H., Winzeler, E. A., Astromoff, A. and Davis, R. W. 1999. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21:278-283 https://doi.org/10.1038/6791
  78. Gianinazzi, S. and Kassanis, B. 1974. Virus resistance induced in plants by polyacrylic acid. J. Gen. Virol. 23:1-9 https://doi.org/10.1099/0022-1317-23-1-1
  79. Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205-227 https://doi.org/10.1146/annurev.phyto.43.040204.135923
  80. Gomez-Gomez, L. and Boller, T. 2000. FLS2: An LRR receptorlike kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:1003-1011 https://doi.org/10.1016/S1097-2765(00)80265-8
  81. Gottstein, H. D. and Kuc, J. A. 1989. Induction of systemic resistance to anthracnose in cucumber by phosphates. Phytopathology 79:176-179 https://doi.org/10.1094/Phyto-79-176
  82. Graham, T. L., Sequeira, L. and Huang, T. S. R. 1977. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Env. Microbiol. 34:424-432
  83. Grigoriev, P. A., Schlegel, B., Kronen, M., Berg, A., Hartl, A. and Grafe, L. 2003. Differences in membrane pore formation by peptaibols. J. Pept. Sci. 9:763-768 https://doi.org/10.1002/psc.502
  84. Groll, M., Schellenberg, B., Bachmann, A. S., Archer, C. R., Huber, R., Powell, T. K., Lindow, S., Kaiser, M. and Dudler, R. 2008. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452:755-U757 https://doi.org/10.1038/nature06782
  85. Gross, A., Kapp, D., Nielsen, T. and Niehaus, K. 2005. Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytol. 165:215-226 https://doi.org/10.1111/j.1469-8137.2004.01245.x
  86. Gust, A. A., Biswas, R., Lenz, H. D., Rauhut, T., Ranf, S., Kemmerling, B., Gotz, F., Glawischnig, E., Lee, J., Felix, G. and Nurnberger, T. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem. 282:32338-32348 https://doi.org/10.1074/jbc.M704886200
  87. Hadwiger, L. 1979. Chitosan formation in Fusarium solani macroconidia on pea tissue. Plant Physiol. 63:S133 https://doi.org/10.1104/pp.63.1.133
  88. Hadwiger, L. A. and Beckman, J. M. 1980. Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol. 66:205-211 https://doi.org/10.1104/pp.66.2.205
  89. Hahn, M. G., Darvill, A. G. and Albersheim, P. 1981. Host-pathogen interactions XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol. 68:1161-1169 https://doi.org/10.1104/pp.68.5.1161
  90. Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacS-dependent production of 2R, 3Rbutanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19:924-930 https://doi.org/10.1094/MPMI-19-0924
  91. Heil, M., Hilpert, A., Kaiser, W. and Linsenmair, K. E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88:645-654 https://doi.org/10.1046/j.1365-2745.2000.00479.x
  92. Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7:61-67 https://doi.org/10.1016/S1360-1385(01)02186-0
  93. Herbers, K., Meuwly, P., Frommer, W. B., Metraux, J. P. and Sonnewald, U. 1996. Systemic acquired resistance mediated by the ectopic expression of invertase: Possible hexose sensing in the secretory pathway. Plant Cell 8:793-803 https://doi.org/10.1105/tpc.8.5.793
  94. Hodgson, W. A., Munro, J., Singh, R. P. and Wood, F. A. 1969. Isolation from Phytophthora infestans of a polysaccharide that inhibits potato virus X. Phytopathology 59:1334-1335
  95. Huffaker, A., Pearce, G. and Ryan, C. A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. USA 103: 10098-10103 https://doi.org/10.1073/pnas.0603727103
  96. Huffaker, A. and Ryan, C. A. 2007. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc. Natl. Acad. Sci. USA 104: 10732-10736 https://doi.org/10.1073/pnas.0703343104
  97. Husebye, H., Halaas, O., Stenmark, H., Tunheim, G., Sandanger, O., Bogen, B., Brech, A., Latz, E. and Espevik, T. 2006. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J. 25:683-692 https://doi.org/10.1038/sj.emboj.7600991
  98. Iavicoli, A., Boutet, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16:851-858 https://doi.org/10.1094/MPMI.2003.16.10.851
  99. Inohara, N. and Nunez, G. 2003. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3:371-382 https://doi.org/10.1038/nri1086
  100. Inverarity, I. A. and Hulme, A. N. 2007. Marked small molecule libraries: a truncated approach to molecular probe design. Org. Biomol. Chem. 5:636-643 https://doi.org/10.1039/b616494c
  101. Iriti, M. and Faoro, F. 2003. Benzothiadiazole (BTH) induces celldeath independent resistance in Phaseolus vulgaris against Uromyces appendiculatus. J. Phytopathol. 151:171-180 https://doi.org/10.1046/j.1439-0434.2003.00700.x
  102. Iriti, M. and Faoro, F. 2007. Review of innate and specific immunity in plants and animals. Mycopathologia 164:57-64 https://doi.org/10.1007/s11046-007-9026-7
  103. Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2001. b-aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 107:29-37 https://doi.org/10.1023/A:1008730721037
  104. Jones, J. 2001. Harpin. Pest. Outlook 12:134-135 https://doi.org/10.1039/b106934a
  105. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA 103:11086-11091 https://doi.org/10.1073/pnas.0508882103
  106. Kasparovsky, T., Milat, M. L., Humbert, C., Blein, J. P., Havel, L. and Mikes, V. 2003. Elicitation of tobacco cells with ergosterol activates a signal pathway including mobilization of internal calcium. Plant Physiol. Bioch. 41:495-501 https://doi.org/10.1016/S0981-9428(03)00058-5
  107. Kauss, H., Fauth, M., Merten, A. and Jeblick, W. 1999. Cucumber hypocotyls respond to cutin monomers via both an inducible and a constitutive $H_2O_2$-generating system. Plant Physiol. 120:1175-1182 https://doi.org/10.1104/pp.120.4.1175
  108. Kazan, K. and Schenk, P. M. 2007. Genomics in induced resistance. In Induced Resistance for Plant Defence, ed. by D. Walters, A. Newton and G. Lyon. pp. 31-64. Blackwell, Oxford, U.K
  109. Kim, S. T., Kim, S. G., Kang, Y. H., Wang, Y., Kim, J. Y., Yi, N., Kim, J. K., Rakwal, R., Koh, H. J. and Kang, K. Y. 2008a. Proteomics analysis of rice lesion mimic mutant (spl1) reveals tightly localized probenazole-induced protein (PBZ1) in cells undergoing programmed cell death. J. Proteome Res. 7:1750-1760 https://doi.org/10.1021/pr700878t
  110. Kim, T. H., Park, J. H., Kim, M. C. and Cho, S. H. 2008b. Cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene. J. Plant Physiol. 165:345-349 https://doi.org/10.1016/j.jplph.2007.06.004
  111. Kim, Y. H., Yeo, W. H., Kim, Y. S., Chae, S. Y. and Kim, K. S. 2000. Antiviral activity of antibiotic peptaibols, chrysospemins B and D, produced by Apiocrea sp 14T against TMV infection. J. Microbiol. Biotech. 10:522-528
  112. Kim, Y. K. and Chang, Y. T. 2007. Tagged library approach facilitates forward chemical genetics. Mol. Biosyst. 3:392-397 https://doi.org/10.1039/b702321a
  113. Klarzynski, O., Plesse, B., Joubert, J. M., Yvin, J. C., Kopp, M., Kloareg, B. and Fritig, B. 2000. Linear $\beta$-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 124:1027-1037 https://doi.org/10.1104/pp.124.3.1027
  114. Koga, J., Yamauchi, T., Shimura, M., Ogawa, N., Oshima, K., Umemura, K., Kikuchi, M. and Ogasawara, N. 1998. Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J. Biol. Chem. 273:31985-31991 https://doi.org/10.1074/jbc.273.48.31985
  115. Koga, J., Kubota, H., Gomi, S., Umemura, K., Ohnishi, M. and Kono, T. 2006. Cholic acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice. Plant Physiol. 140:1475-1483 https://doi.org/10.1104/pp.105.070334
  116. Kover, P. X. and Schaal, B. A. 2002. Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions. Proc. Natl. Acad. Sci. USA 99:11270-11274 https://doi.org/10.1073/pnas.102288999
  117. Kuc, J. E., Williams, B. and Shay, J. R. 1957. Increase of resistance to apple scab following injection of host with phenylthiourea and D-phenylalanine. Phytopathology 47:21-22
  118. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T. and Felix, G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496-3507 https://doi.org/10.1105/tpc.104.026765
  119. Kusano, T., Berberich, T., Tateda, C. and Takahashi, Y. 2008. Polyamines: essential factors for growth and survival. Planta 228:367-381 https://doi.org/10.1007/s00425-008-0772-7
  120. Laquitaine, L., Gomes, E., Francois, J., Marchive, C., Pascal, S., Hamdi, S., Atanassova, R., Delrot, S. and Coutos-Thevenot, P. 2006. Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: Induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. Mol. Plant-Microbe Interact. 19:1103-1112 https://doi.org/10.1094/MPMI-19-1103
  121. Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T. and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10:71-82 https://doi.org/10.1046/j.1365-313X.1996.10010071.x
  122. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J. and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16:223-233 https://doi.org/10.1046/j.1365-313x.1998.00288.x
  123. Lherminier, J., Benhamou, N., Larrue, J., Milat, M. L., Boudon-Padieu, E., Nicole, M. and Blein, J. P. 2003. Cytological characterization of elicitin-induced protection in tobacco plants infected by Phytophthora parasitica or phytoplasma. Phytopathology 93:1308-1319 https://doi.org/10.1094/PHYTO.2003.93.10.1308
  124. Li, X., Song, Y. J., Century, K., Straight, S., Ronald, P., Dong, X. N., Lassner, M. and Zhang, Y. L. 2001. A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J. 27:235-242 https://doi.org/10.1046/j.1365-313x.2001.01084.x
  125. Li, Y. M., Zhang, Z. K., Jia, Y. T., Shen, Y. M., He, H. M., Fang, R. X., Chen, X. Y. and Hao, X. J. 2008. 3-acetonyl-3-hydroxyoxindole: a new inducer of systemic acquired resistance in plants. Plant Biotech. J. 6:301-308 https://doi.org/10.1111/j.1467-7652.2008.00322.x
  126. Liang, H., Yao, N., Song, L. T., Luo, S., Lu, H. and Greenberg, L. T. 2003. Ceramides modulate programmed cell death in plants. Genes Dev. 17:2636-2641 https://doi.org/10.1101/gad.1140503
  127. Lin, Y. Z., Chen, H. Y., Kao, R., Chang, S. P., Chang, S. J. and Lai, E. M. 2008. Proteomic analysis of rice defense response induced by probenazole. Phytochem. 69:715-728 https://doi.org/10.1016/j.phytochem.2007.09.005
  128. Malamy, J., SanchezCasas, P., Hennig, J., Guo, A. L. and Klessig, D. F. 1996. Dissection of the salicylic acid signaling pathway in tobacco. Mol. Plant-Microbe Interact. 9:474-482 https://doi.org/10.1094/MPMI-9-0474
  129. Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. and Cameron, R. K. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399-403 https://doi.org/10.1038/nature00962
  130. Mauch-Mani, B. and Mauch, F. 2005. The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8:409-414 https://doi.org/10.1016/j.pbi.2005.05.015
  131. Menard, R., Alban, S., de Ruffray, P., Jamois, F., Franz, G., Fritig, B., Yvin, J. C. and Kauffmann, S. 2004. $\beta$-1,3 glucan sulfate, but not $\beta$-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell 16:3020-3032 https://doi.org/10.1105/tpc.104.024968
  132. Menard, R., de Ruffray, P., Fritig, B., Yvin, J. C. and Kauffmann, S. 2005. Defense and resistance-inducing activities in tobacco of the sulfated b-1,3 glucan PS3 and its synergistic activities with the unsulfated molecule. Plant Cell Physiol. 46:1964-1972 https://doi.org/10.1093/pcp/pci212
  133. Metraux, J. P., Ahl-Goy, P., Staub, T., Speich, J., Steinemann, A., Ryals, J. and Ward, E. 1991. Induced systemic resistance in cucumber in response to 2,6-dichloroisonicotinic acid and pathogens. In Advances in Molecular Genetics of Plant-Microbe Interactions, ed. by H. Hennecke and D.P.S. Verma. pp. 432-439. Kluwer, Dordecht, The Netherlands
  134. Midoh, N. and Iwata, M. 1996. Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesisrelated protein in rice. Plant Cell Physiol. 37:9-18 https://doi.org/10.1093/oxfordjournals.pcp.a028918
  135. Mills, P. R. and Wood, R. K. S. 1984. The effects of polyacrylic acid, acetylsalicylic acid and salicylic acid on resistance of cucumber to Colletotrichum lagenarium. J. Phytopathol. 111:209-216 https://doi.org/10.1111/j.1439-0434.1984.tb00763.x
  136. Mitchell, A. F. and Walters, D. R. 2004. Potassium phosphate induces systemic protection in barley to powdery mildew infection. Pest Manag. Sci. 60:126-134 https://doi.org/10.1002/ps.795
  137. Mithofer, A., Lottspeich, F. and Ebel, J. 1996. One-step purification of the $\beta$-glucan elicitor-binding protein from soybean (Glycine max L) roots and characterization of an anti-peptide antiserum. FEBS Lett. 381:203-207 https://doi.org/10.1016/0014-5793(96)00126-3
  138. Mittra, B., Ghosh, P., Henry, S. L., Mishra, J., Das, T. K., Ghosh, S., Babu, C. R. and Mohanty, P. 2004. Novel mode of resistance to Fusarium infection by a mild dose pre-exposure of cadmium in wheat. Plant Physiol. Biochem. 42:781-787 https://doi.org/10.1016/j.plaphy.2004.09.005
  139. Miya, A., Albert, P., Desaki, Y., Ichimura, K., Shirasu, K., Kawakami, N., Kaku, H. and Shibuya, N. 2007. A novel receptor kinase that mediates chitin elicitor signaling. Plant Cell Physiol. 48:S133
  140. Miyake, K. 2006. Roles for accessory molecules in microbial recognition by Toll-like receptors. J. Endotoxin Res. 12:195-204 https://doi.org/10.1179/096805106X118807
  141. Mylonakis, E., Casadevall, A. and Ausubel, F.M. 2007. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PloS Pathogens 3:859-865
  142. Nakashita, H., Yoshioka, K., Takayama, M., Kuga, R., Midoh, N., Usami, R., Horikoshi, K., Yoneyama, K. and Yamaguchi, I. 2001. Characterization of PBZ1, a probenazole-inducible gene, in suspension-cultured rice cells. Biosci. Biotech. Bioch. 65:205-208 https://doi.org/10.1271/bbb.65.205
  143. Nakashita, H., Yasuda, M., Nishioka, M., Hasegawa, S., Arai, Y., Uramoto, M., Yoshida, S. and Yamaguchi, I. 2002. Chloroisonicotinamide derivative induces a broad range of disease resistance in rice and tobacco. Plant Cell Physiol. 43:823-831 https://doi.org/10.1093/pcp/pcf097
  144. Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I. and Yoshida, S. 2003a. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33:887-898 https://doi.org/10.1046/j.1365-313X.2003.01675.x
  145. Nakashita, H., Yasuda, M., Okage, R., Nishioka, M., Arie, T. and Yoshida, S. 2003b. A pyrazole derivative induce systemic acquired resistance with a new type of action. Plant Cell Physiol. 44:S179-S179
  146. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O. and Jones, J. D. G. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436-439 https://doi.org/10.1126/science.1126088
  147. Newman, M. A., von Roepenack, E., Daniels, M. and Dow, M. 2000. Lipopolysaccharides and plant responses to phytopathogenic bacteria. Mol. Plant Pathol. 1:25-31 https://doi.org/10.1046/j.1364-3703.2000.00004.x
  148. Newman, M. A., von Roepenack-Lahaye, E., Parr, A., Daniels, M. J. and Dow, J. M. 2002. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J. 29:487-495 https://doi.org/10.1046/j.0960-7412.2001.00233.x
  149. Newman, M. A., Dow, J. M., Molinaro, A. and Parrilli, M. 2007. Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J. Endotoxin Res. 13:69-84 https://doi.org/10.1177/0968051907079399
  150. Nishimura, M. T., Stein, M., Hou, B. H., Vogel, J. P., Edwards, H. and Somerville, S. C. 2003. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969-972 https://doi.org/10.1126/science.1086716
  151. Nishioka, M., Nakashita, H., Yasuda, M., Yoshida, S. and Yamaguchi, I. 2005. Induction of resistance against rice bacterial leaf blight by 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid. J. Pest. Sci. 30:47-49 https://doi.org/10.1584/jpestics.30.47
  152. Nurnberger, T., Brunner, F., Kemmerling, B. and Piater, L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198:249-266 https://doi.org/10.1111/j.0105-2896.2004.0119.x
  153. Oh, H. S. and Lee, Y. H. 2000. A target-site-specific screening system for antifungal compounds on appressorium formation in Magnaporthe grisea. Phytopathology 90:1162-1168 https://doi.org/10.1094/PHYTO.2000.90.10.1162
  154. Oldenburg, J., Marinova, M., Muller-Reible, C. and Watzka, M. 2008. The vitamin K cycle. Vitam. Horm. 78:35-62
  155. Ongena, M., Jourdan, E., Schafer, M., Kech, C., Budzikiewicz, H., Luxen, A. and Thonart, P. 2005. Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol. Plant-Microbe Interact. 18:562-569 https://doi.org/10.1094/MPMI-18-0562
  156. Orober, M., Siegrist, J. and Buchenauer, H. 2002. Mechanisms of phosphate-induced disease resistance in cucumber. Eur. J. Plant Pathol. 108:345-353 https://doi.org/10.1023/A:1015696408402
  157. Ortega-Ortiz, H., Benavides-Mendoza, A., Flores-Olivas, A. and Ledezma-Perez, A. 2003. Use of the interpolyelectrolyte complexes of poly(acrylic acid)-chitosan as inductors of tolerance against pathogenic fungi in tomato (Lycopersicon esculentum mill. var. floradade). Macromol. Biosci. 3:566-570 https://doi.org/10.1002/mabi.200300021
  158. Osman, H., Vauthrin, S., Mikes, V., Milat, M. L., Panabieres, F., Marais, A., Brunie, S., Maume, B., Ponchet, M. and Blein, J. P. 2001. Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Mol. Biol. Cell 12:2825-2834 https://doi.org/10.1091/mbc.12.9.2825
  159. Papavizas, G. C. 1964. Greenhouse control of Aphanomyces root rot of peas with aminobutyric acid and methyaspartic acid. Plant Dis. Rep. 48:537-541
  160. Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S. and Klessig, D. F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113-116 https://doi.org/10.1126/science.1147113
  161. Parsons, A. B., Brost, R. L., Ding, H. M., Li, Z. J., Zhang, C. Y., Sheikh, B., Brown, G. W., Kane, P. M., Hughes, T. R. and Boone, C. 2004. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotech. 22:62-69 https://doi.org/10.1038/nbt919
  162. Pontzen, R. and Scheinpflug, H. 1989. Effects of triazole fungicides on sterol biosynthesis during spore germination of Botrytis cinerea, Venturia inaequalis and Puccinia graminis f.sp. tritici. Neth. J. Plant Pathol. 95:151-160 https://doi.org/10.1007/BF01974294
  163. Poschenrieder, C., Tolra, R. and Barcelo, J. 2006. Can metals defend plants against biotic stress? Trends Plant Sci. 11:288-295 https://doi.org/10.1016/j.tplants.2006.04.007
  164. Prithiviraj, B., Perry, L. G., Badri, D. V. and Vivanco, J. M. 2007. Chemical facilitation and induced pathogen resistance mediated by a root-secreted phytotoxin. New Phytol. 173:852-860 https://doi.org/10.1111/j.1469-8137.2006.01964.x
  165. Pushpalatha, H. G., Mythrashree, S. R., Shetty, R., Geetha, N. P., Sharathchandra, R. G., Amruthesh, K. N. and Shetty, H. S. 2007. Ability of vitamins to induce downy mildew disease resistance and growth promotion in pearl millet. Crop Prot. 26:1674-1681 https://doi.org/10.1016/j.cropro.2007.02.012
  166. Qin, G. Z. and Tian, S. P. 2005. Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved. Phytopathology 95:69-75 https://doi.org/10.1094/PHYTO-95-0069
  167. Qutob, D., Kemmerling, B., Brunner, F., Kufner, I., Engelhardt, S., Gust, A. A., Luberacki, B., Seitz, H. U., Stahl, D., Rauhut, T., Glawischnig, E., Schween, G., Lacombe, B., Watanabe, N., Lam, E., Schlichting, R., Scheel, D., Nau, K., Dodt, G., Hubert, D., Gijzen, M. and Nurnberger, T. 2006. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721-3744 https://doi.org/10.1105/tpc.106.044180
  168. Rao, A. V. R., Ravichandran, K., David, S. B. and Ranade, S. 1985. Menadione sodium bisulfite - A promising plant growth regulator. Plant Growth Regul. 3:111-118 https://doi.org/10.1007/BF01806050
  169. Reignault, P., Cogan, A., Muchembled, J., Sahraoui, A. L. H., Durand, R. and Sancholle, M. 2001. Trehalose induces resistance to powdery mildew in wheat. New Phytol. 149:519-529 https://doi.org/10.1046/j.1469-8137.2001.00035.x
  170. Reignault, P. and Walters, D. 2007. Topical application of inducers for disease control. In Induced Resistance for Plant Defence, ed. by D. Walters, A. Newton and G. Lyon. pp. 179-200. Blackwell, Oxford, U.K
  171. Renard-Merlier, D., Randoux, B., Nowak, E., Farcy, F., Durand, R. and Reignault, P. 2007. Iodus 40, salicyclic acid, heptanoyl salicylic acid and trehalose exhibit different efficacies and defence targets during a wheat/powdery mildew interaction. Phytochem. 68:1156-1164 https://doi.org/10.1016/j.phytochem.2007.02.011
  172. Robert-Seilaniantz, A., Navarro, L., Bari, R. and Jones, J. D. 2007. Pathological hormone imbalances. Curr. Opin. Plant Biol. 10:372-379 https://doi.org/10.1016/j.pbi.2007.06.003
  173. Ron, M. and Avni, A. 2004. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604-1615 https://doi.org/10.1105/tpc.022475
  174. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819 https://doi.org/10.1105/tpc.8.10.1809
  175. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026 https://doi.org/10.1104/pp.103.026583
  176. Sasabe, M., Naito, K., Suenaga, H., Ikeda, T., Toyodak, K., Inagaki, Y., Shiraishi, T. and Ichinose, Y. 2007. Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells. DNA Seq. 18:152-159 https://doi.org/10.1080/10425170601060905
  177. Schafer, W. 1993. The role of cutinase in fungal pathogenicity. Trends Microbiol. 1:69-71 https://doi.org/10.1016/0966-842X(93)90037-R
  178. Schreiber, K., Ckurshumova, W., Peek, J. and Desveaux, D. 2008. A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis. Plant J. 54:522-531 https://doi.org/10.1111/j.1365-313X.2008.03425.x
  179. Schurter, R., Kunz, W. and Nyfeler, R. 1987. Process and a composition for immunizing plants against diseases. US Patent 4931581
  180. Schweizer, P., Gees, R. and Mosinger, E. 1993. Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L) with the powdery mildew Erysiphe graminis f.sp. hordei. Plant Physiol. 102:503-511 https://doi.org/10.1104/pp.102.2.503
  181. Schweizer, P., Jeanguenat, A., Whitacre, D., Metraux, J. P. and Mosinger, E. 1996. Induction of resistance in barley against Erysiphe graminis f.sp. hordei by free cutin monomers. Physiol. Mol. Plant Pathol. 49:103-120 https://doi.org/10.1006/pmpp.1996.0043
  182. Serrano, M., Robatzek, S., Torres, M., Kombrink, E., Somssich, I. E., Robinson, M. and Schulze-Lefert, P. 2007. Chemical interference of pathogen-associated molecular pattern-triggered immune responses in Arabidopsis reveals a potential role for fatty-acid synthase type II complex-derived lipid signals. J. Biol. Chem. 282:6803-6811 https://doi.org/10.1074/jbc.M608792200
  183. Shibuya, N. and Minami, E. 2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59:223-233 https://doi.org/10.1006/pmpp.2001.0364
  184. Shikazono, N., Suzuki, C., Kitamura, S., Watanabe, H., Tano, S. and Tanaka, A. 2005. Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J. Exp. Bot. 56:587-596 https://doi.org/10.1093/jxb/eri047
  185. Shimizu, T., Jikumaru, Y., Okada, A., Okada, K., Koga, J., Umemura, K., Minami, E., Shibuya, N., Hasegawa, M., Kodama, O., Nojiri, H. and Yamane, H. 2008. Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells. Phytochem. 69:973-981 https://doi.org/10.1016/j.phytochem.2007.10.005
  186. Singh, R. P., Wood, F. A. and Hodgson, W. A. 1970. Nature of virus inhibition by a polysaccharide from Phytophthora infestans. Phytopathology 60:1566-1569 https://doi.org/10.1094/Phyto-60-1566
  187. Sinha, A. K. and Giri, D. N. 1979. Approach to control brown spot of rice with chemicals known as phytoalexin inducers. Curr. Sci. 48:782-784
  188. Slovakova, L., Liskova, D., Capek, P., Kubackova, M., Kakoniova, D. and Karacsonyi, S. 2000. Defence responses against TNV infection induced by galactoglucomannan-derived oligosaccharides in cucumber cells. Eur. J. Plant Pathol. 106:543-553 https://doi.org/10.1023/A:1008722318178
  189. Spoel, S. H. and Dong, X. N. 2008. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348-351 https://doi.org/10.1016/j.chom.2008.05.009
  190. Stockwell, B. R. 2000. Chemical genetics: Ligand-based discovery of gene function. Nat. Rev. Genet. 1:116-125 https://doi.org/10.1038/35038557
  191. Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L. and Vagvolgyi, C. 2005. Peptaibols and related peptaibiotics of Trichoderma. A review. Acta Microbiol. Immunol. Hung. 52:137-168 https://doi.org/10.1556/AMicr.52.2005.2.2
  192. Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. A. and Broekaert, W. F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111 https://doi.org/10.1073/pnas.95.25.15107
  193. Ton, J. and Mauch-Mani, B. 2004. b-aminobutyric acid-induced resistance against necrotrophic pathogens is based on ABAdependent priming for callose. Plant J. 38:119-130 https://doi.org/10.1111/j.1365-313X.2004.02028.x
  194. Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., Metraux, J. P. and Mauch-Mani, B. 2005. Dissecting the $\beta$-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987-999 https://doi.org/10.1105/tpc.104.029728
  195. Torrigiani, P., Rabiti, A. L., Bortolotti, C., Betti, L., Marani, F., Canova, A. and Bagni, N. 1997. Polyamine synthesis and accumulation in the hypersensitive response to TMV in Nicotiana tabacum. New Phytol. 135:467-473 https://doi.org/10.1046/j.1469-8137.1997.00669.x
  196. Trotel-Aziz, P., Couderchet, M., Vernet, G. and Aziz, A. 2006. Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur. J. Plant Pathol. 114:405-413 https://doi.org/10.1007/s10658-006-0005-5
  197. Trouvelot, S., Varnier, A. L., Allegre, M., Mercier, L., Baillieul, F., Arnould, C., Gianinazzi-Pearson, V., Klarzynski, O., Joubert, J. M., Pugin, A. and Daire, X. 2008. A $\beta$-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HRlike cell death. Mol. Plant-Microbe Interact. 21:232-243 https://doi.org/10.1094/MPMI-21-2-0232
  198. Tsubata, K., Kuroda, K., Yamamoto, Y. and Yasokawa, N. 2006. Development of a novel plant activator for rice diseases, tiadinil. J. Pest. Sci. 31:161-162 https://doi.org/10.1584/jpestics.31.161
  199. Uknes, S., Mauchmani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. 1992. Acquired resistance in Arabidopsis. Plant Cell 4:645-656 https://doi.org/10.1105/tpc.4.6.645
  200. Umemoto, N., Kakitani, M., Iwamatsu, A., Yoshikawa, M., Yamaoka, N. and Ishida, I. 1997. The structure and function of a soybean b-glucan-elicitor-binding protein. Proc. Natl. Acad. Sci. USA 94:1029-1034 https://doi.org/10.1073/pnas.94.3.1029
  201. Umemura, K., Tanino, S., Nagatsuka, T., Koga, J., Iwata, M., Nagashima, K. and Amemiya, Y. 2004. Cerebroside elicitor confers resistance to Fusarium disease in various plant species. Phytopathology 94:813-818 https://doi.org/10.1094/PHYTO.2004.94.8.813
  202. van Andel, O. M. 1966. Amino acids and plant diseases. Annu. Rev. Phytopathol. 14:349-368
  203. van der Merwe, J. A. and Dubery, I. A. 2006. Benzothiadiazole inhibits mitochondrial NADH : ubiquinone oxidoreductase in tobacco. J. Plant Physiol. 163:877-882 https://doi.org/10.1016/j.jplph.2005.08.016
  204. van Hulten, M., Pelser, M., van Loon, L. C., Pieterse, C. M. J. and Ton, J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 103:5602-5607 https://doi.org/10.1073/pnas.0510213103
  205. van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
  206. Vargas, W. A., Djonovic, S., Sukno, S. A. and Kenerley, C. M. 2008. Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J. Biol. Chem. 283:19804-19815 https://doi.org/10.1074/jbc.M802724200
  207. Vernooij, B., Friedrich, L., Goy, P. A., Staub, T., Kessmann, H. and Ryals, J. 1995. 2,6-Dichloroisonicotinic acid induced resistance to pathogens without the accumulation of salicylic acid. Mol. Plant-Microbe Interact. 8:228-234 https://doi.org/10.1094/MPMI-8-0228
  208. Villaba-Mateos, F., Rickauer, M. and EsquerreTugaye, M. T. 1997. Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol. Plant-Microbe Interact. 10:1045-1053 https://doi.org/10.1094/MPMI.1997.10.9.1045
  209. Viterbo, A., Wiest, A., Brotman, Y., Chet, I. and Kenerley, C. 2007. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol. Plant Pathol. 8:737-746 https://doi.org/10.1111/j.1364-3703.2007.00430.x
  210. Walsh, T. A., Bauer, T., Neal, R., Merlo, A. O., Schmitzer, P. R., Hicks, G. R., Honma, M., Matsumura, W., Wolff, K. and Davies, J. P. 2007. Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. Plant Physiol. 144:1292-1304 https://doi.org/10.1104/pp.107.099705
  211. Walters, D. 2003. Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol. 159:109-115 https://doi.org/10.1046/j.1469-8137.2003.00802.x
  212. Walters, D., Walsh, D., Newton, A. and Lyon, G. 2005. Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology 95:1368-1373 https://doi.org/10.1094/PHYTO-95-1368
  213. Walters, D. R. and Murray, D. C. 1992. Induction of systemic resistance to rust in Vicia faba by phosphate and EDTA: effects of calcium. Plant Pathol. 41:444-448 https://doi.org/10.1111/j.1365-3059.1992.tb02439.x
  214. Wan, J. R., Zhang, X. C., Neece, D., Ramonell, K. M., Clough, S., Kim, S. Y., Stacey, M. G. and Stacey, G. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471-481 https://doi.org/10.1105/tpc.107.056754
  215. Wang, D., Pajerowska-Mukhtar, K., Culler, A. H. and Dong, X. N. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17:1784-1790 https://doi.org/10.1016/j.cub.2007.09.025
  216. Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahlgoy, P., Metraux, J. P. and Ryals, J. A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085-1094 https://doi.org/10.1105/tpc.3.10.1085
  217. Waspi, U., Blanc, D., Winkler, T., Ruedi, P. and Dudler, R. 1998. Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice. Mol. Plant-Microbe Interact. 11:727-733 https://doi.org/10.1094/MPMI.1998.11.8.727
  218. Waspi, U., Schweizer, P. and Dudler, R. 2001. Syringolin reprograms wheat to undergo hypersensitive cell death in a compatible interaction with powdery mildew. Plant Cell 13:153-161 https://doi.org/10.1105/tpc.13.1.153
  219. Watanabe, T., Igarashi, H., Matsumoto, K., Seki, S., Mase, S. and Sekizawa, Y. 1977. Studies on rice blast controlling agent of benzisothiazole analogs. 1. Characteristics of probenazole (Oryzemate) for control of rice blast. J. Pest. Sci. 2:291-296 https://doi.org/10.1584/jpestics.2.291
  220. Waugh, R., Leader, D. J., McCallum, N. and Caldwell, D. 2006. Harvesting the potential of induced biological diversity. Trends Plant Sci. 11:71-79 https://doi.org/10.1016/j.tplants.2005.12.007
  221. Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A. and Beer, S. V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88 https://doi.org/10.1126/science.1621099
  222. Wendehenne, D., Durner, J., Chen, Z. X. and Klessig, D. F. 1998. Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochem. 47:651-657 https://doi.org/10.1016/S0031-9422(97)00604-3
  223. White, R. F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410-412 https://doi.org/10.1016/0042-6822(79)90019-9
  224. White, R. F., Dumas, E., Shaw, P. and Antoniw, J. F. 1986. The chemical induction of PR (b) proteins and resistance to TMV Infection in tobacco. Antiviral Res. 6:177-185 https://doi.org/10.1016/0166-3542(86)90012-4
  225. Yamakawa, H., Kamada, H., Satoh, M. and Ohashi, Y. 1998. Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiol. 118:1213-1222 https://doi.org/10.1104/pp.118.4.1213
  226. Yasuda, M., Nishioka, M., Nakashita, H., Yamaguchi, I. and Yoshida, S. 2003. Pyrazolecarboxylic acid derivative induces systemic acquired resistance in tobacco. Biosci. Biotech. Bioch. 67:2614-2620 https://doi.org/10.1271/bbb.67.2614
  227. Yasuda, M., Nakashita, H. and Yoshida, S. 2004. Tiadinil, a novel class of activator of systemic acquired resistance, induces defense gene expression and disease resistance in tobacco. J. Pest. Sci. 29:46-49 https://doi.org/10.1584/jpestics.29.46
  228. Yasuda, M., Kusajima, M., Nakajima, M., Akutsu, K., Kudo, T., Yoshida, S. and Nakashita, H. 2006. Thiadiazole carboxylic acid moiety of tiadinil, SV-03, induces systemic acquired resistance in tobacco without salicylic acid accumulation. J. Pest. Sci. 31:329-334 https://doi.org/10.1584/jpestics.31.329
  229. Yasuda, M. 2007. Regulation mechanisms of systemic acquired resistance induced by plant activators. J. Pest. Sci. 32:281-282 https://doi.org/10.1584/jpestics.32.281
  230. Yoshida, H., Shimano, S., Mochizuki, S., Konishi, K., Koike, K. and Nakagawa, T. 1987. N-Cyanoalkylisonicotinamide derivatives. US Patent 4804762
  231. Yoshida, H., Konishi, K., Koike, K., Nakagawa, T., Sekido, S. and Yamaguchi, I. 1990. Effect of N-cyanomethyl-2-chloroisonicotinamide for control of rice blast. J. Pest. Sci. 15:413-417 https://doi.org/10.1584/jpestics.15.413
  232. Yoshioka, K., Nakashita, H., Klessig, D. F. and Yamaguchi, I. 2001. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J. 25:149-157 https://doi.org/10.1046/j.1365-313x.2001.00952.x
  233. Zhao, Y., Chow, T. F., Puckrin, R. S., Alfred, S. E., Korir, A. K., Larive, C. K. and Cutler, S. R. 2007. Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated. Nat. Chem. Biol. 3:716-721 https://doi.org/10.1038/nchembio.2007.32
  234. Zheng, X. F. S., Chan, T. F. and Zhou, H. H. 2004. Genetic and genomic approaches to identify and study the targets of bioactive small molecules. Chem. Biol. 11:609-618 https://doi.org/10.1016/j.chembiol.2003.08.011
  235. Zimmerli, L., Jakab, C., Metraux, J. P. and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by $\beta$-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97:12920-12925 https://doi.org/10.1073/pnas.230416897
  236. Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2001. $\beta$-aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126:517-523 https://doi.org/10.1104/pp.126.2.517
  237. Zinati, G. M. 2005. Compost in the 20th century: A tool to control plant diseases in nursery and vegetable crops. HortTechnology 15:61-66
  238. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D. G., Felix, G. and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767 https://doi.org/10.1038/nature02485
  239. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D. G., Boller, T. and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacteriummediated transformation. Cell 125:749-760 https://doi.org/10.1016/j.cell.2006.03.037

Cited by

  1. Resistance to Spongospora subterranea induced in potato by the elicitor β-aminobutyric acid vol.44, pp.4, 2015, https://doi.org/10.1007/s13313-015-0363-6
  2. Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host–defense responses, including HR like-cell death vol.57, 2012, https://doi.org/10.1016/j.plaphy.2012.05.016
  3. Isolation and characterization of the plant immune-priming compounds Imprimatin B3 and -B4, potentiators of disease resistance inArabidopsis thaliana vol.7, pp.12, 2012, https://doi.org/10.4161/psb.22138
  4. ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid vol.2, pp.1, 2012, https://doi.org/10.1038/srep00705
  5. Is modulating virus virulence by induced systemic resistance realistic? vol.234, 2015, https://doi.org/10.1016/j.plantsci.2015.01.011
  6. Isonitrosoacetophenone Drives Transcriptional Reprogramming in Nicotiana tabacum Cells in Support of Innate Immunity and Defense vol.10, pp.2, 2015, https://doi.org/10.1371/journal.pone.0117377
  7. Considerations for designing chemical screening strategies in plant biology vol.6, 2015, https://doi.org/10.3389/fpls.2015.00131
  8. Variation in the response of tomato (Solanum lycopersicum ) breeding lines to the effects of benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) on systemic acquired resistance and seed germination vol.165, pp.10, 2017, https://doi.org/10.1111/jph.12606
  9. Characterization of a Proposed Dichorhavirus Associated with the Citrus Leprosis Disease and Analysis of the Host Response vol.6, pp.7, 2014, https://doi.org/10.3390/v6072602
  10. Found in Translation: High-Throughput Chemical Screening inArabidopsis thalianaIdentifies Small Molecules That Reduce Fusarium Head Blight Disease in Wheat vol.24, pp.6, 2011, https://doi.org/10.1094/MPMI-09-10-0210
  11. A Trifloxystrobin Fungicide Induces Systemic Tolerance to Abiotic Stresses vol.28, pp.1, 2012, https://doi.org/10.5423/PPJ.NT.11.2011.0207
  12. Systemic Acquired Resistance (50 Years after Discovery): Moving from the Lab to the Field vol.61, pp.51, 2013, https://doi.org/10.1021/jf404156x
  13. Imprimatins A and B vol.7, pp.12, 2012, https://doi.org/10.4161/psb.22368
  14. Inducible gene expression systems and plant biotechnology vol.27, pp.6, 2009, https://doi.org/10.1016/j.biotechadv.2009.05.006
  15. Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase vol.44, pp.3, 2012, https://doi.org/10.1007/s11262-012-0725-x
  16. The bile acid deoxycholate elicits defences in Arabidopsis and reduces bacterial infection vol.18, pp.4, 2017, https://doi.org/10.1111/mpp.12416
  17. Searching ISR determinant/s from Bacillus subtilis IAGS174 against Fusarium wilt of tomato vol.60, pp.2, 2015, https://doi.org/10.1007/s10526-014-9636-1
  18. Synthetic plant defense elicitors vol.5, 2014, https://doi.org/10.3389/fpls.2014.00804
  19. U romyces appendiculatus Infection in BTH-Treated Bean Plants: Ultrastructural Details of a Lost Fight vol.171, pp.3, 2011, https://doi.org/10.1007/s11046-010-9350-1
  20. vol.217, pp.2, 2017, https://doi.org/10.1111/nph.14849
  21. Benzothiadiazole, a plant defense inducer, negatively regulates sheath blight resistance in Brachypodium distachyon vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-35790-w